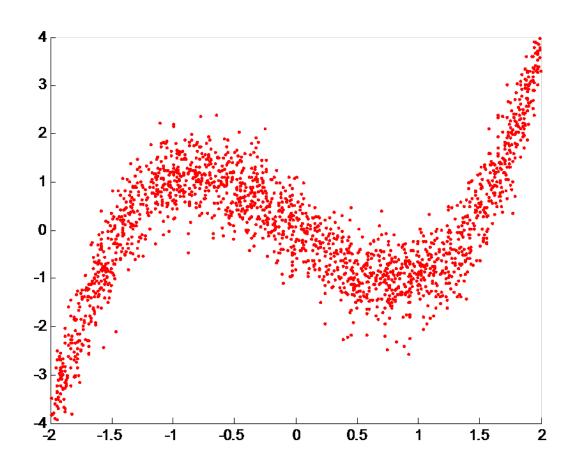
Statistical Learning Theory

- When a pattern or regularity is found in data, is it real or spurious?
- i.e., can it be used for prediction?
- Learning theories address this issue.
- Statistical Learning Theory was started by Vapnik and Chervonenkis in the 1960s (aka VC theory).
- Provides bounds on prediction error.
- An early motivation for SVMs.
- Main concepts: capacity and VC dimension.

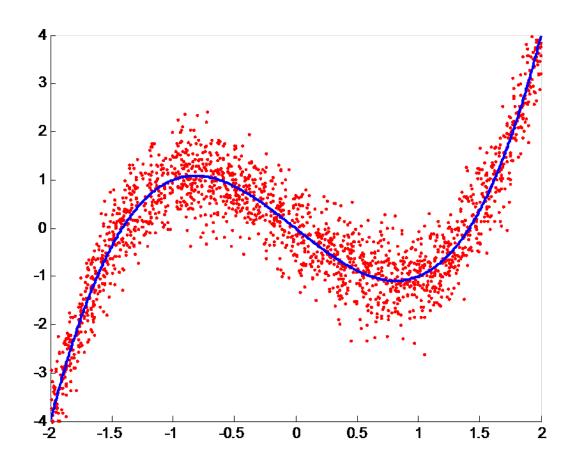
Prediction

- Problem: given x, predict y.
 - i.e., find a function f such that y = f(x).
- Usually, no function works perfectly.
- Instead, find a function that minimizes the expected error, which is called the *risk*.
- Error is measured by a cost function, c(x,y,z),
 where z = predicted value of y given x.
- Assume data comes from a distribution, P(x,y).

A data distribution for a regression problem



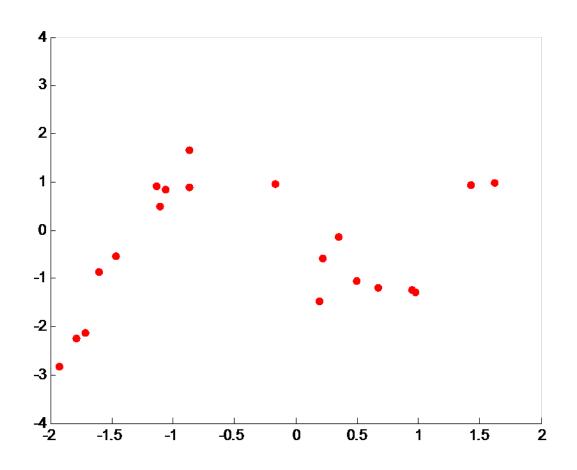
The function that minimizes risk (as measured by squared error)



Limitations

- We do not know the data distribution.
- We may not even know its form (e.g., Gaussian, Poisson, etc).
- We only have a sample of data from the distribution.

A random sample of 20 points



Actual risk v.s. Empirical risk

- R(f) denotes the actual risk of function f.
 - We cannot minimize actual risk, since we do not know the data distribution.
- R_{emp}(f) denotes the empirical risk of function f.
 - We can minimize empirical risk, since it depends only on the data sample.
- But we must be careful, since a function with low empirical risk can have high actual risk.
 - This is called overfitting.

No Free Lunch Theorem

If the class of functions is *completely unrestricted*, then

- Two functions can fit the training data perfectly but make completely opposite predictions.
- Since they behave identically on the training data, it is impossible to say which one makes better predictions.
- Learning and prediction are therefore impossible.

The Importance of the Set of Functions

What about allowing *all* functions from \mathcal{X} to $\{\pm 1\}$?

```
Training set (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \in \mathcal{X} \times \{\pm 1\}

Test patterns \bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_{\bar{m}} \in \mathcal{X},

such that \{\bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_{\bar{m}}\} \cap \{\mathbf{x}_1, \dots, \mathbf{x}_m\} = \{\}.

For any f there exists f^* s.t.:  1. \quad f^*(\mathbf{x}_i) = f(\mathbf{x}_i) \text{ for all } i 
 2. \quad f^*(\bar{\mathbf{x}}_j) \neq f(\bar{\mathbf{x}}_j) \text{ for all } j.
```

Based on the training set alone, there is *no* means of choosing which one is better. On the test set, however, they give *opposite* results. There is 'no free lunch' [32, 73].

 \longrightarrow a restriction must be placed on the *functions* that we allow

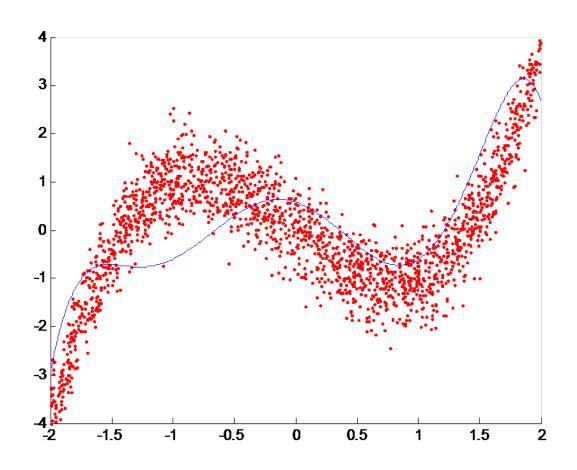
Restricting the class of functions

- To make accurate predictions, the class of functions must be restricted.
 - This is true of any approach to machine learning, statistical or non-statistical.
- In statistical learning theory, one limits the capacity of the class of functions (e.g., via the VC dimension).
- In Bayesian learning, one places *prior* distributions over the class of functions.

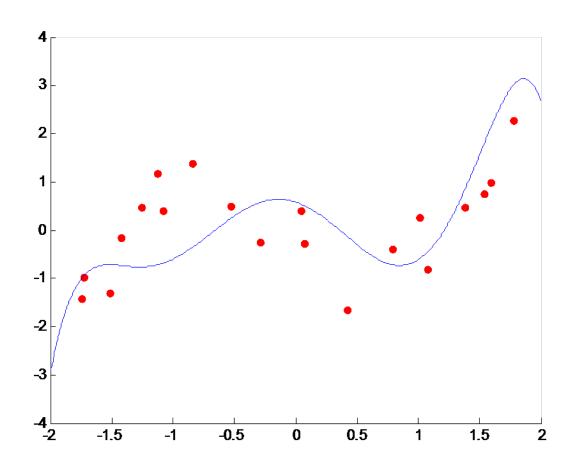
Empirical risk is a random variable

- Given a fixed function, f, the empirical risk depends only on the data set.
- Since the data set is random, the empirical risk is random.
- R_{emp}(f) is therefore a random variable.
- As such, it has a mean and variance.

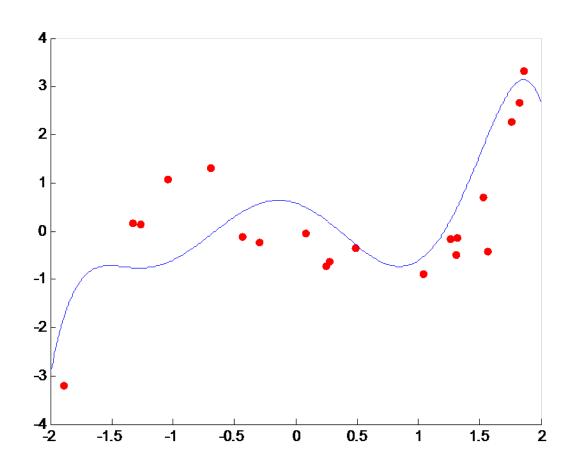
R(f): the actual risk of function f depends on the data distribution



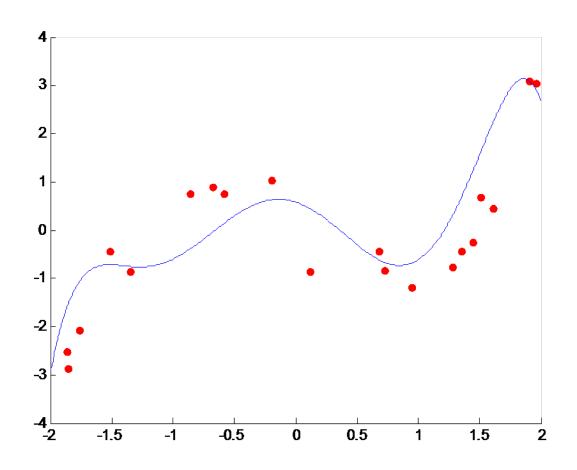
R_{emp}(f): empirical risk of function f for data set 1



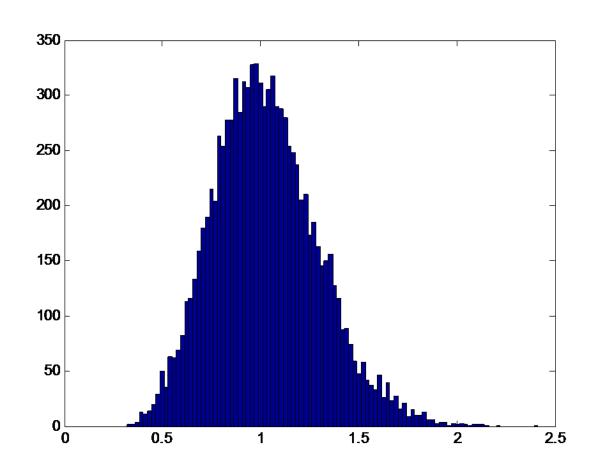
R_{emp}(f): empirical risk of function f for data set 2



R_{emp}(f): empirical risk of function f for data set 3



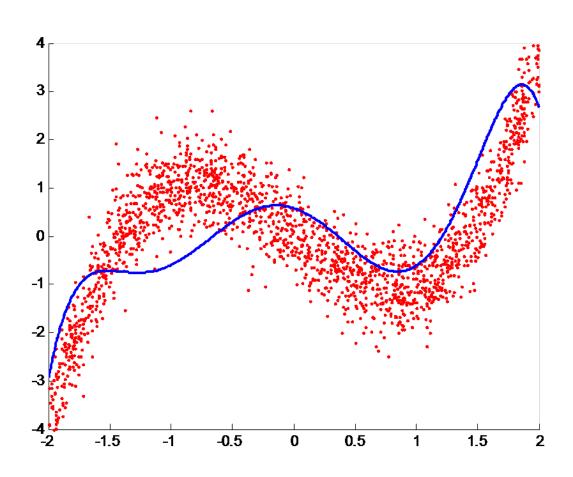
Histogram of R_{emp}(f) for 10,000 data sets of 20 points each



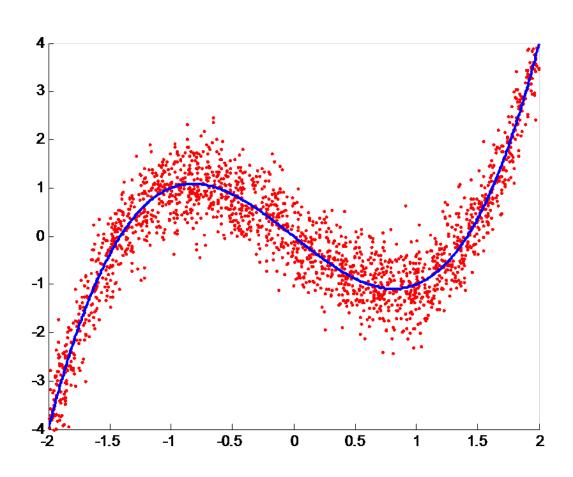
Different functions, different random variables

- Each function has its own actual risk and empirical risk.
- The empirical risks for different functions represent different random variables.
 - i.e., If f_1 , f_2 and f_3 are different functions, then $R_{emp}(f_1)$, $R_{emp}(f_2)$ and $R_{emp}(f_3)$ are different random variables.

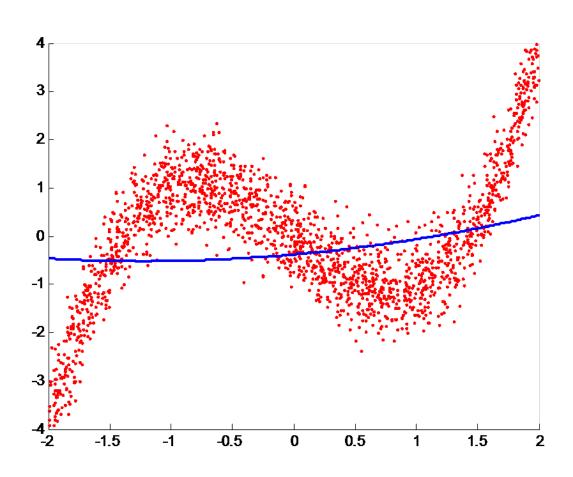
Function f₁



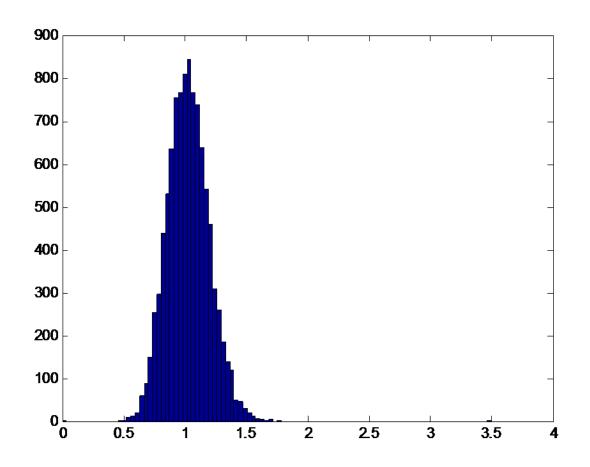
Function f₂



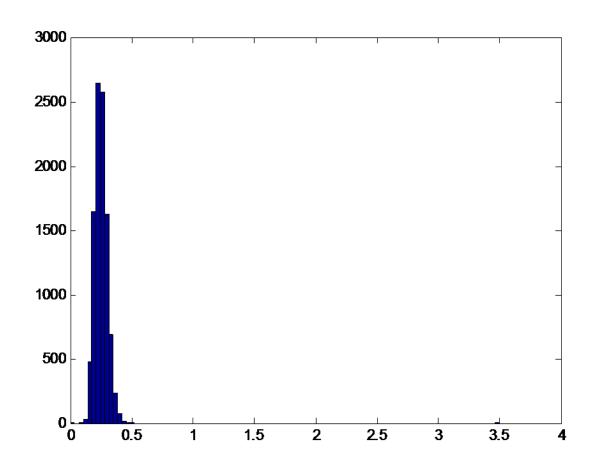
Function f₃



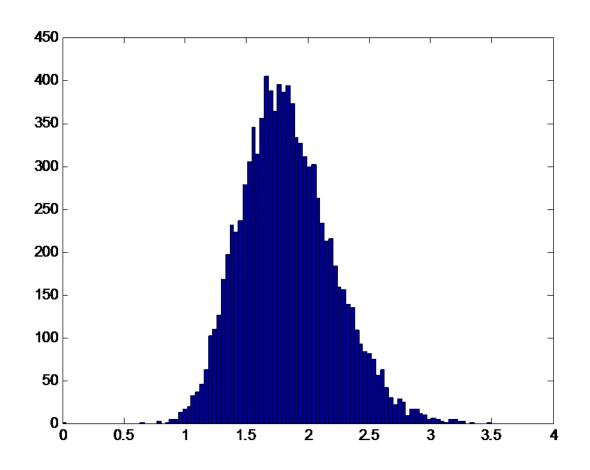
Histogram of empirical risk of f₁ for 10,000 data sets of 50 points each



Histogram of empirical risk of f₂ for 10,000 data sets of 50 points each



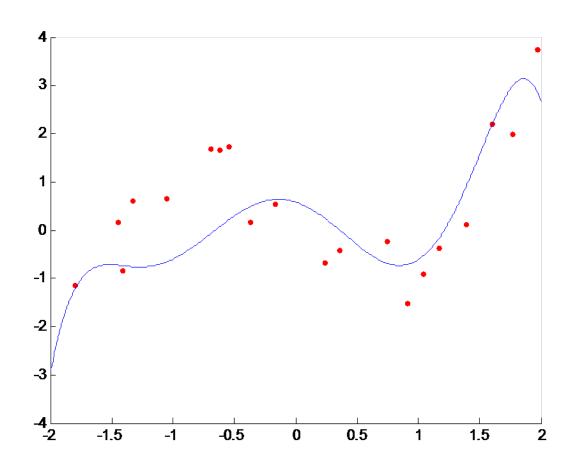
Histogram of empirical risk of f₃ for 10,000 data sets of 50 points each



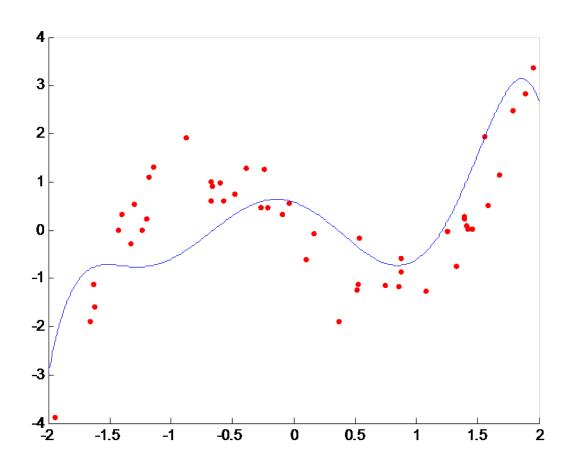
Properties of empirical risk

- Empirical risk is an unbiased estimate of actual risk: E[R_{emp}(f)] = R(f).
- The variance of the empirical risk decreases as the size of the data sample increases.
- Thus, as the data sample gets larger, then with high probability, R_{emp}(f) gets closer to R(f).
- This is called convergence in probability.

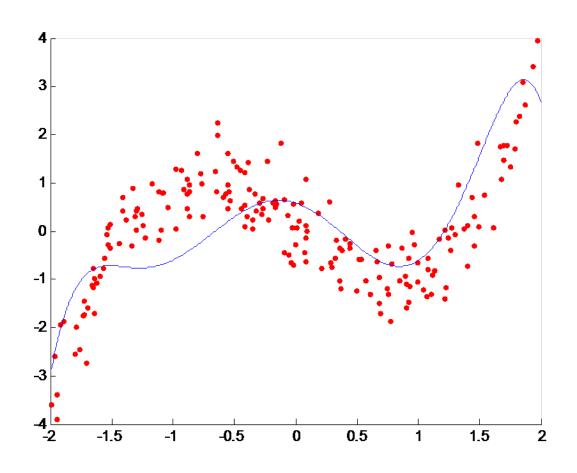
Function f and 20 data points



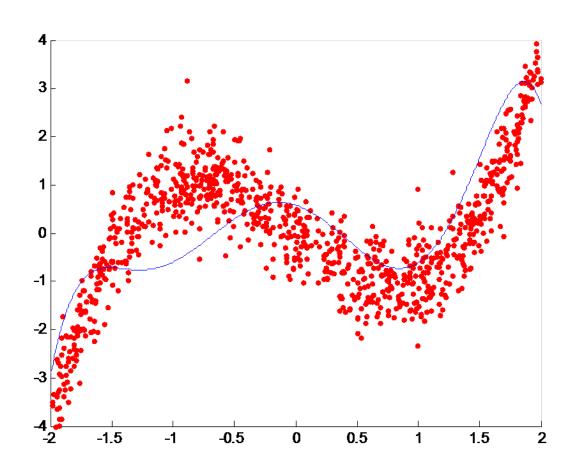
Function f and 50 data points



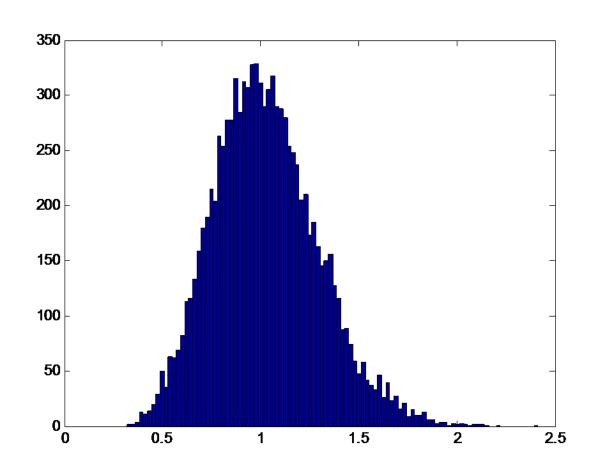
Function f and 200 data points



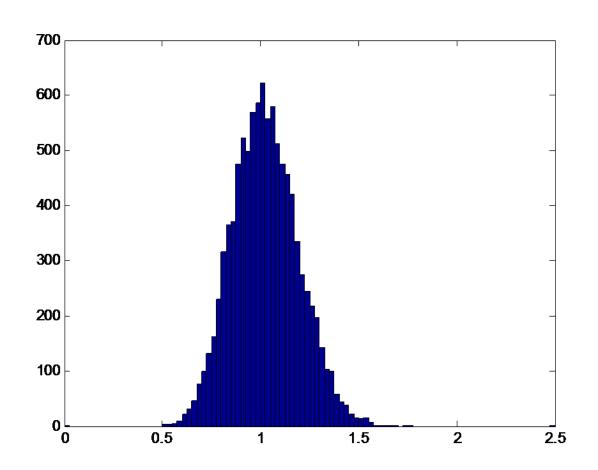
Function f and 1000 data points



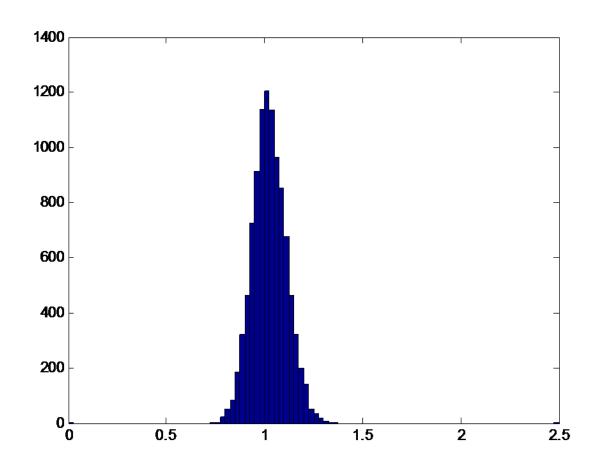
Histogram of empirical risk of f for 10,000 data sets of 20 points each



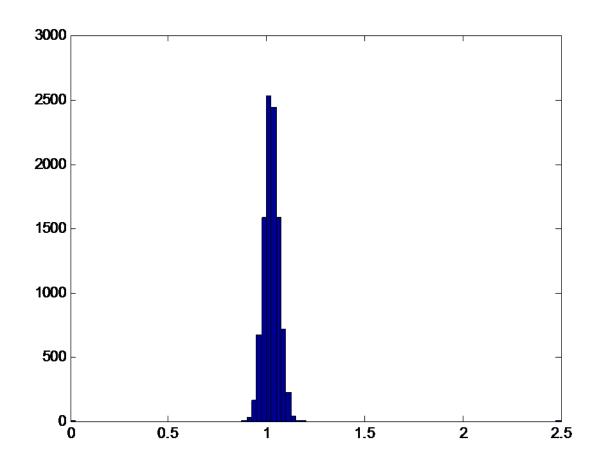
Histogram of empirical risk of f for 10,000 data sets of 50 points each



Histogram of empirical risk of f for 10,000 data sets of 200 points each



Histogram of empirical risk of f for 10,000 data sets of 1000 points each



Chernoff bound

- The law of large numbers tells us that R_{emp}(f) converges in probability to R(f).
- The Chernoff bound tells us *how fast* it convergences.
- It also tells us something about actual risk by placing confidence intervals on it.
- All without knowing the data distribution!
- Note: f is any fixed function.

Learning by minimizing empirical risk

- Let f^m be a function that minimizes empirical risk for a given sample of m data points.
- Let f^{opt} be a function that minimizes actual risk.
- Does R(f^m) converge in probability to R(f^{opt})?
- Our results so far do not answer this question since f^m is not fixed but depends on the data.

Detailed Analysis

- loss $\xi_i := \frac{1}{2} |f(x_i) y_i|$ in $\{0, 1\}$
- the ξ_i are independent Bernoulli trials
- empirical mean $\frac{1}{m} \sum_{i=1}^{m} \xi_i$ (by def: equals $R_{\text{emp}}[f]$)
- expected value $\mathbf{E}[\xi]$ (equals R[f])

Chernoff's Bound

$$P\left\{ \left| \frac{1}{m} \sum_{i=1}^{m} \xi_i - \mathbf{E}[\xi] \right| \ge \epsilon \right\} \le 2 \exp(-2m\epsilon^2)$$

• here, P refers to the probability of getting a sample ξ_1, \ldots, ξ_m with the property $\left|\frac{1}{m}\sum_{i=1}^m \xi_i - \mathbf{E}\left[\xi\right]\right| \geq \epsilon$ (is a product measure)

Useful corollary: Given a 2m-sample of Bernoulli trials, we have

$$P\left\{\left|\frac{1}{m}\sum_{i=1}^{m}\xi_i - \frac{1}{m}\sum_{i=m+1}^{2m}\xi_i\right| \ge \epsilon\right\} \le 4\exp\left(-\frac{m\epsilon^2}{2}\right).$$

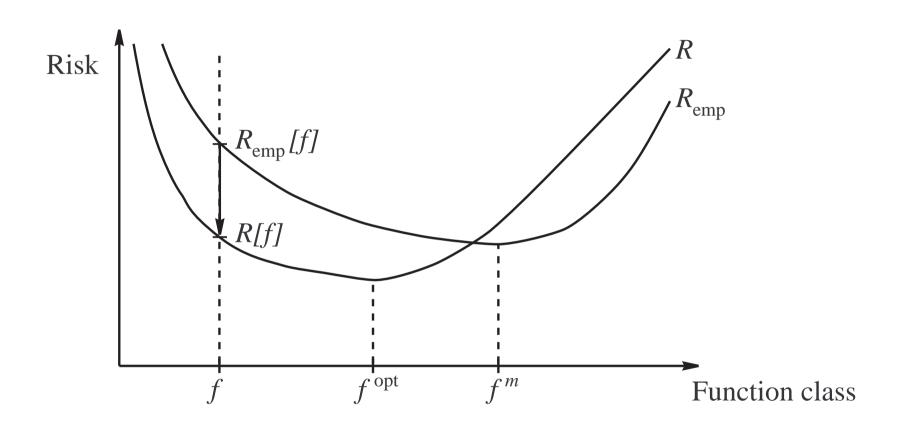
Chernoff's Bound, II

Translate this back into machine learning terminology: the probability of obtaining an m-sample where the training error and test error differ by more than $\epsilon > 0$ is bounded by

$$P\{|R_{\rm emp}[f] - R[f]| \ge \epsilon\} \le 2\exp(-2m\epsilon^2).$$

- \bullet refers to one fixed f
- not allowed to look at the data before choosing f, hence not suitable as a bound on the test error of a learning algorithm using empirical risk minimization

Consistency and Uniform Convergence



Two Observations

• denote the minimizer of R by f^{opt} . Then

$$R[f] - R[f^{\mathrm{opt}}] \ge 0$$

for all $f \in \mathcal{F}$.

• denote the minimizer of R_{emp} by f^m . Then

$$R_{\rm emp}[f] - R_{\rm emp}[f^m] \ge 0$$

for all $f \in \mathcal{F}$.

• In particular, we have

$$R[f^m] - R[f^{\text{opt}}] \ge 0$$

and

$$R_{\text{emp}}[f^{\text{opt}}] - R_{\text{emp}}[f^m] \ge 0.$$

The sum of these two inequalities satisfies

$$0 \leq R[f^{m}] - R[f^{\text{opt}}] + R_{\text{emp}}[f^{\text{opt}}] - R_{\text{emp}}[f^{m}] = R[f^{m}] - R_{\text{emp}}[f^{m}] + R_{\text{emp}}[f^{\text{opt}}] - R[f^{\text{opt}}] \leq \sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) + (R_{\text{emp}}[f^{\text{opt}}] - R[f^{\text{opt}}]).$$

• second half of RHS: f^{opt} is fixed (independent of training sample), hence by Chernoff: for all $\epsilon > 0$,

$$\lim_{m \to \infty} P\{|R_{\text{emp}}[f^{\text{opt}}] - R[f^{\text{opt}}]| > \epsilon\} = 0$$

("convergence in probability")

• If the first half of RHS also converges to zero (in probability), i.e.,

$$\lim_{m \to \infty} P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\} = 0,$$

for all $\epsilon > 0$, then

$$R[f^m] - R[f^{\text{opt}}] \to 0$$

$$R_{\text{emp}}[f^{\text{opt}}] - R_{\text{emp}}[f^m] \to 0$$

in probability — in this case, empirical risk minimization can be seen to be *consistent*.

Uniform Convergence (Vapnik & Chervonenkis)

Necessary and sufficient conditions for consistency of empirical risk minimization (ERM):

One-sided convergence, uniformly over all functions that can be implemented by the learning machine.

$$\lim_{m \to \infty} P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\} = 0$$

for all $\epsilon > 0$.

- note that this takes into account the whole set of functions that can be implemented by the learning machine
- this is hard to check for a learning machine

Are there properties of learning machines (\equiv sets of functions) which ensure uniform convergence of risk?

How to Prove a VC Bound

Take a closer look at $P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\}$. Plan:

ullet if the function class ${\mathcal F}$ contains only one function, then Chernoff's bound suffices:

$$P\{\sup_{f\in\mathcal{F}}(R[f]-R_{\rm emp}[f])>\epsilon\}\leq 2\exp(-2m\epsilon^2).$$

- if there are finitely many functions, we use the 'union bound'
- even if there are infinitely many, then on any finite sample there are effectively only finitely many (use symmetrization and capacity concepts)

The Case of Two Functions

Suppose $\mathcal{F} = \{f_1, f_2\}$. Rewrite

$$P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\} = P(C_{\epsilon}^{1} \cup C_{\epsilon}^{2}),$$

where

$$C_{\epsilon}^{i} := \{(x_{1}, y_{1}), \dots, (x_{m}, y_{m}) \mid (R[f_{i}] - R_{\text{emp}}[f_{i}]) > \epsilon\}$$

denotes the event that the risks of f_i differ by more than ϵ . The RHS equals

$$P(C_{\epsilon}^{1} \cup C_{\epsilon}^{2}) = P(C_{\epsilon}^{1}) + P(C_{\epsilon}^{2}) - P(C_{\epsilon}^{1} \cap C_{\epsilon}^{2})$$

$$\leq P(C_{\epsilon}^{1}) + P(C_{\epsilon}^{2}).$$

Hence by Chernoff's bound

$$P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\} \le P(C_{\epsilon}^{1}) + P(C_{\epsilon}^{2})$$
$$\le 2 \cdot 2 \exp(-2m\epsilon^{2}).$$

The Union Bound

Similarly, if $\mathcal{F} = \{f_1, \dots, f_n\}$, we have

$$P\{\sup_{f\in\mathcal{F}}(R[f]-R_{\rm emp}[f])>\epsilon\}=P(C_{\epsilon}^1\cup\cdots\cup C_{\epsilon}^n),$$

and

$$P(C_{\epsilon}^1 \cup \dots \cup C_{\epsilon}^n) \le \sum_{i=1}^n P(C_{\epsilon}^i).$$

Use Chernoff for each summand, to get an extra factor n in the bound.

Note: this becomes an equality if and only if all the events involved are disjoint.

Infinite Function Classes

- Note: empirical risk only refers to m points. On these points, the functions of \mathcal{F} can take at most 2^m values
- for $R_{\rm emp}$, the function class thus "looks" finite
- how about R?
- need to use a trick

Symmetrization

Lemma 1 (Vapnik & Chervonenkis (e.g., [63, 19]))

For $m\epsilon^2 \ge 2$ we have

$$P\{\sup_{f\in\mathcal{F}}(R[f]-R_{\rm emp}[f]) > \epsilon\} \le 2P\{\sup_{f\in\mathcal{F}}(R_{\rm emp}[f]-R'_{\rm emp}[f]) > \epsilon/2\}$$

Here, the first P refers to the distribution of iid samples of size m, while the second one refers to iid samples of size 2m. In the latter case, $R_{\rm emp}$ measures the loss on the first half of the sample, and $R'_{\rm emp}$ on the second half.

Shattering Coefficient

- Hence, we only need to consider the maximum size of \mathcal{F} on 2m points. Call it $\mathcal{N}(\mathcal{F}, 2m)$.
- $\mathcal{N}(\mathcal{F}, 2m) = \max$ number of different outputs (y_1, \ldots, y_{2m}) that the function class can generate on 2m points in other words, the max. number of different ways the function class can separate 2m points into two classes.
- $\bullet \mathcal{N}(\mathcal{F}, 2m) \le 2^{2m}$
- if $\mathcal{N}(\mathcal{F}, 2m) = 2^{2m}$, then the function class is said to *shatter* 2m points.

Putting Everything Together

We now use (1) symmetrization, (2) the shattering coefficient, and (3) the union bound, to get

$$P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\}
 \leq 2P\{\sup_{f \in \mathcal{F}} (R_{\text{emp}}[f] - R'_{\text{emp}}[f]) > \epsilon/2\}
 = 2P\{(R_{\text{emp}}[f_1] - R'_{\text{emp}}[f_1]) > \epsilon/2 \vee ... \vee (R_{\text{emp}}[f_{\mathcal{N}(\mathcal{F},2m)}] - R'_{\text{emp}}[f_{\mathcal{N}(\mathcal{F},2m)}]) > \epsilon/2\}
 \leq \sum_{n=1}^{\mathcal{N}(\mathcal{F},2m)} 2P\{(R_{\text{emp}}[f_n] - R'_{\text{emp}}[f_n]) > \epsilon/2\}.$$

ctd.

Use Chernoff's bound for each term:*

$$P\left\{\frac{1}{m}\sum_{i=1}^{m}\xi_i - \frac{1}{m}\sum_{i=m+1}^{2m}\xi_i \ge \epsilon\right\} \le 2\exp\left(-\frac{m\epsilon^2}{2}\right).$$

This yields

his yields
$$P\{\sup_{f\in\mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\} \le 4\mathcal{N}(\mathcal{F}, 2m) \exp\left(-\frac{m\epsilon^2}{8}\right).$$

- provided that $\mathcal{N}(\mathcal{F}, 2m)$ does not grow exponentially in m, this is nontrivial
- such bounds are called VC type inequalities
- two types of randomness: (1) the P refers to the drawing of the training examples, and (2) R[f] is an expectation over the drawing of test examples.

^{*} A rigorous treatment would need to use a second randomization over permutations of the 2m-sample, see |53|.

Confidence Intervals

Rewrite the bound: specify the probability with which we want R to be close to $R_{\rm emp}$, and solve for ϵ :

With a probability of at least $1 - \delta$,

$$R[f] \le R_{\text{emp}}[f] + \sqrt{\frac{8}{m}} \left(\ln(\mathcal{N}(\mathcal{F}, 2m)) + \ln \frac{4}{\delta} \right).$$

This bound holds independent of f; in particular, it holds for the function f^m minimizing the empirical risk.

Discussion

- tighter bounds are available (better constants etc. cf. Shahar Mendelson's tutorial)
- ullet cannot minimize the bound over f
- other capacity concepts can be used

VC Entropy

On an example (\mathbf{x}, y) , f causes a loss

$$c(x, y, f(x)) := \frac{1}{2}|f(x) - y| \in \{0, 1\}.$$

 $c(x,y,f(x)):=\frac{1}{2}|f(x)-y|\in\{0,1\}.$ For a larger sample $(x_1,y_1)\ldots,(x_m,y_m),$ the different functions $f \in \mathcal{F}$ lead to a set of loss vectors

$$\boldsymbol{\xi}_f = (c(x_1, y_1, f(x_1)), \dots, c(x_m, y_m, f(x_m))),$$

whose cardinality we denote by

$$\mathcal{N}\left(\mathcal{F},\left(x_{1},y_{1}\right)\ldots,\left(x_{m},y_{m}\right)\right)$$
.

The VC entropy is defined as

$$H_{\mathcal{F}}(m) = \mathbf{E} \left[\ln \mathcal{N} \left(\mathcal{F}, (x_1, y_1) \dots, (x_m, y_m) \right) \right],$$

where the expectation is taken over the random generation of the m-sample $(x_1, y_1) \dots, (x_m, y_m)$ from P.

 $H_{\mathcal{F}}(m)/m \to 0 \iff$ uniform convergence of risks (hence consistency)

Further PR Capacity Concepts

• exchange 'E' and 'ln': annealed entropy.

 $H_{\mathcal{F}}^{ann}(m)/m \to 0 \iff$ exponentially fast uniform convergence

• take 'max' instead of 'E': growth function. Note that $G_{\mathcal{F}}(m) = \ln \mathcal{N}(\mathcal{F}, m)$.

 $G_{\mathcal{F}}(m)/m \to 0 \iff$ exponential convergence for all underlying distributions P.

 $G_{\mathcal{F}}(m) = m \cdot \ln(2)$ for all $m \iff$ for any m, all loss vectors can be generated, i.e., the m points can be chosen such that by using functions of the learning machine, they can be separated in all 2^m possible ways (shattered).

Structure of the Growth Function

Either $G_{\mathcal{F}}(m) = m \cdot \ln(2)$ for all $m \in \mathbb{N}$

Or there exists some $maximal\ m$ for which the above is possible. Call this number the VC-dimension, and denote it by h. For m > h,

$$G_{\mathcal{F}}(m) \le h \left(\ln \frac{m}{h} + 1 \right).$$

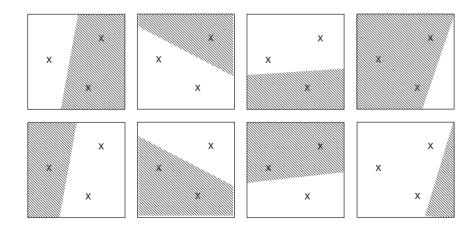
Nothing "in between" linear growth and logarithmic growth is possible.

VC-Dimension: Example

Half-spaces in \mathbb{R}^2 :

$$f(x,y) = \operatorname{sgn}(a + bx + cy)$$
, with parameters $a, b, c \in \mathbb{R}$

- Clearly, we can shatter three non-collinear points.
- But we can never shatter four points.
- Hence the VC dimension is h = 3 (in this case, equal to the number of parameters)



A Typical Bound for Pattern Recognition

For any $f \in \mathcal{F}$ and m > h, with a probability of at least $1 - \delta$,

$$R[f] \le R_{\text{emp}}[f] + \phi\left(\frac{h}{m}, \frac{\log(\delta)}{m}\right)$$

holds, where the confidence term ϕ is defined as

$$\phi\left(\frac{h}{m}, \frac{\log(\delta)}{m}\right) = \sqrt{\frac{h\left(\log\frac{2m}{h} + 1\right) - \log(\delta/4)}{m}}.$$

- does this mean, that we can learn *any*thing?
- The study of the consistency of ERM has thus led to concepts and results which lets us formulate a better induction principle: we can use this bound to get a low risk!
- in practice: use as a guideline for designing algorithms

Examples of Induction Principles

• Empirical risk minimization: minimize

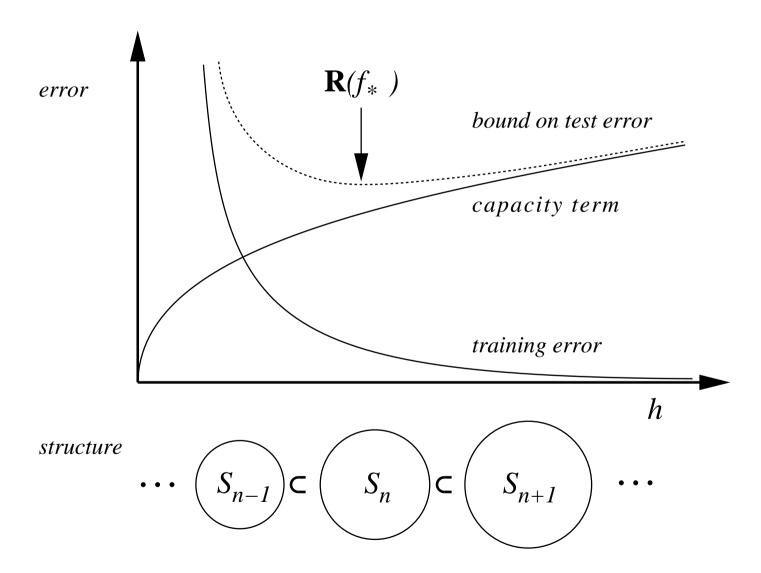
$$R_{\text{emp}}[f] = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} |f(\mathbf{x}_i) - y_i|$$

- Minimum description length: minimize some measure of the description length of the sequence $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$ by a function f.
- Structural risk minimization (SRM) [63]: minimize the RHS of

$$R[f] \le R_{\text{emp}}[f] + \phi\left(\frac{h}{m}\right).$$

To this end, introduce a structure on \mathcal{F} .

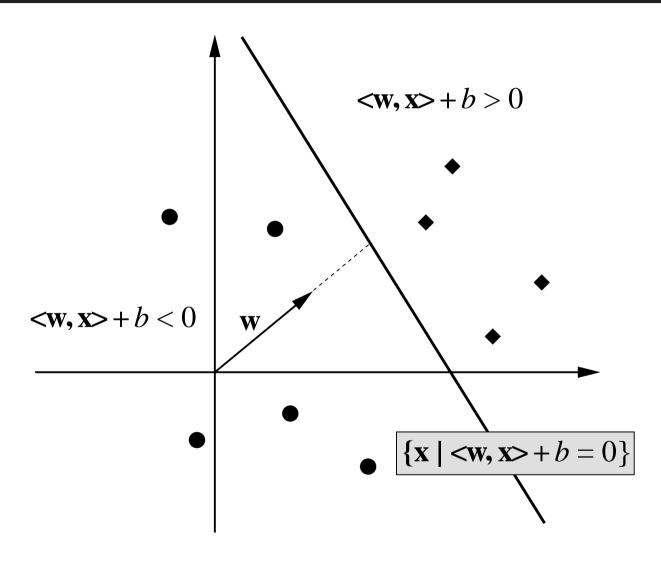
Learning machine \equiv a set of functions and an induction principle



Finding a Good Function Class

- recall: separating hyperplanes in \mathbb{R}^2 have a VC dimension of 3.
- more generally: separating hyperplanes in \mathbb{R}^N have a VC dimension of N+1.
- hence: separating hyperplanes in high-dimensional feature spaces have extremely large VC dimension, and may not generalize well
- however, margin hyperplanes can still have a small VC dimension

Separating Hyperplane



Note: if $c \neq 0$, then

$$\{\mathbf{x} | \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\} = \{\mathbf{x} | \langle c\mathbf{w}, \mathbf{x} \rangle + cb = 0\}.$$

Hence $(c\mathbf{w}, cb)$ describes the same hyperplane as (\mathbf{w}, b) .

Definition: The hyperplane is in *canonical* form w.r.t. $X^* = \{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ if $\min_{\mathbf{x}_i \in X} |\langle \mathbf{w}, \mathbf{x}_i \rangle + b| = 1$.

Note that for canonical hyperplanes, the distance of the closest point to the hyperplane ("margin") is $1/||\mathbf{w}||$:

$$\min_{\mathbf{x}_i \in X} \left| \left\langle \frac{\mathbf{w}}{\|\mathbf{w}\|}, \mathbf{x}_i \right\rangle + \frac{b}{\|\mathbf{w}\|} \right| = \frac{1}{\|\mathbf{w}\|}.$$

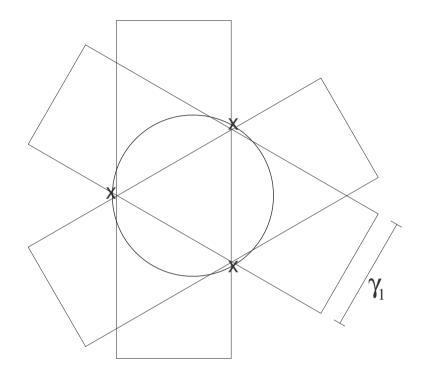
Theorem 2 (Vapnik [63]) Consider hyperplanes $\langle \mathbf{w}, \mathbf{x} \rangle = 0$ where \mathbf{w} is normalized such that they are in canonical form w.r.t. a set of points $X^* = \{\mathbf{x}_1, \dots, \mathbf{x}_r\}$, i.e.,

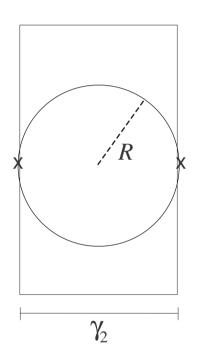
$$\min_{i=1,\ldots,r} |\langle \mathbf{w}, \mathbf{x}_i \rangle| = 1.$$

The set of decision functions $f_{\mathbf{w}}(\mathbf{x}) = \operatorname{sgn} \langle \mathbf{x}, \mathbf{w} \rangle$ defined on X^* and satisfying the constraint $\|\mathbf{w}\| \leq \Lambda$ has a VC dimension satisfying

$$h \le R^2 \Lambda^2$$
.

Here, R is the radius of the smallest sphere around the origin containing X^* .





recall $\gamma > 2/\Lambda$

Proof Strategy (Gurvits, 1997)

Assume that $\mathbf{x}_1, \dots, \mathbf{x}_r$ are shattered by canonical hyperplanes with $\|\mathbf{w}\| \leq \Lambda$, i.e., for all $y_1, \dots, y_r \in \{\pm 1\}$, there exists a \mathbf{w} such that

$$y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1 \text{ for all } i = 1, \dots, r.$$
 (1)

Two steps:

- prove that the more points we want to shatter (1), the larger $\|\sum_{i=1}^r y_i \mathbf{x}_i\|$ must be
- upper bound the size of $\|\sum_{i=1}^r y_i \mathbf{x}_i\|$ in terms of R

Combining the two tells us how many points we can at most shatter.

Part I

Summing (1) over i = 1, ..., r yields

$$\left\langle \mathbf{w}, \left(\sum_{i=1}^r y_i \mathbf{x}_i \right) \right\rangle \ge r.$$

By the Cauchy-Schwarz inequality, on the other hand, we have

$$\left\langle \mathbf{w}, \left(\sum_{i=1}^{r} y_i \mathbf{x}_i \right) \right\rangle \le \|\mathbf{w}\| \left\| \sum_{i=1}^{r} y_i \mathbf{x}_i \right\| \le \Lambda \left\| \sum_{i=1}^{r} y_i \mathbf{x}_i \right\|.$$

Combine both:

$$\frac{r}{\Lambda} \le \left\| \sum_{i=1}^{r} y_i \mathbf{x}_i \right\| . \tag{2}$$

Part II

Consider independent random labels $y_i \in \{\pm 1\}$, uniformly distributed (Rademacher variables).

$$\mathbf{E} \left[\left\| \sum_{i=1}^{r} y_{i} \mathbf{x}_{i} \right\|^{2} \right] = \sum_{i=1}^{r} \mathbf{E} \left[\left\langle y_{i} \mathbf{x}_{i}, \sum_{j=1}^{r} y_{j} \mathbf{x}_{j} \right\rangle \right]$$

$$= \sum_{i=1}^{r} \mathbf{E} \left[\left\langle y_{i} \mathbf{x}_{i}, \left(\left(\sum_{j \neq i} y_{j} \mathbf{x}_{j} \right) + y_{i} \mathbf{x}_{i} \right) \right\rangle \right]$$

$$= \sum_{i=1}^{r} \left(\left(\sum_{j \neq i} \mathbf{E} \left[\left\langle y_{i} \mathbf{x}_{i}, y_{j} \mathbf{x}_{j} \right\rangle \right] \right) + \mathbf{E} \left[\left\langle y_{i} \mathbf{x}_{i}, y_{i} \mathbf{x}_{i} \right\rangle \right] \right)$$

$$= \sum_{i=1}^{r} \mathbf{E} \left[\left\| y_{i} \mathbf{x}_{i} \right\|^{2} \right] = \sum_{i=1}^{r} \mathbf{E} \left[\left\| \mathbf{x}_{i} \right\|^{2} \right]$$

Part II, ctd.

Since $\|\mathbf{x}_i\| \leq R$, we get

$$\mathbf{E} \left\| \sum_{i=1}^{r} y_i \mathbf{x}_i \right\|^2 \le rR^2.$$

• This holds for the *expectation* over the random choices of the labels, hence there must be at least one set of labels for which it also holds true. Use this set.

Hence

$$\left\| \sum_{i=1}^{r} y_i \mathbf{x}_i \right\|^2 \le rR^2.$$

Part I and II Combined

Part I:
$$\left(\frac{r}{\Lambda}\right)^2 \le \left\|\sum_{i=1}^r y_i \mathbf{x}_i\right\|^2$$

Part II:
$$\left\|\sum_{i=1}^{r} y_i \mathbf{x}_i\right\|^2 \le rR^2$$

Hence

$$\frac{r^2}{\Lambda^2} \le rR^2,$$

$$r \le R^2\Lambda^2.$$

i.e.,

$$r < R^2 \Lambda^2$$
.