
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15a
From Principal Components Analysis to Autoencoders

Principal Components Analysis

•  This takes N-dimensional data and finds the M orthogonal directions
in which the data have the most variance.
–  These M principal directions form a lower-dimensional subspace.
–  We can represent an N-dimensional datapoint by its projections

onto the M principal directions.
–  This loses all information about where the datapoint is located in

the remaining orthogonal directions.
•  We reconstruct by using the mean value (over all the data) on the

N-M directions that are not represented.
–  The reconstruction error is the sum over all these unrepresented

directions of the squared differences of the datapoint from the mean.

A picture of PCA with N=2 and M=1

direction of first principal component
i.e. direction of greatest variance

The red point is represented by the
green point. The “reconstruction”
of the red point has an error
equal to the squared
distance between
red and green
points.

Using backpropagation to implement PCA inefficiently

•  Try to make the output be the
same as the input in a network
with a central bottleneck.

•  The activities of the hidden
units in the bottleneck form an
efficient code.

•  If the hidden and output layers are
linear, it will learn hidden units
that are a linear function of the
data and minimize the squared
reconstruction error.
–  This is exactly what PCA does.

•  The M hidden units will span the
same space as the first M
components found by PCA
–  Their weight vectors may not be

orthogonal.
–  They will tend to have equal

variances.

input vector

output vector

code

Using backpropagation to generalize PCA

•  With non-linear layers before
and after the code, it should be
possible to efficiently represent
data that lies on or near a non-
linear manifold.
–  The encoder converts

coordinates in the input
space to coordinates on
the manifold.

–  The decoder does the
inverse mapping. input vector

output vector

code

encoding
weights

decoding
weights

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15b
Deep Autoencoders

Deep Autoencoders

•  They always looked like a
really nice way to do non-
linear dimensionality
reduction:
–  They provide flexible

mappings both ways.
–  The learning time is linear

(or better) in the number of
training cases.

–  The final encoding model
is fairly compact and fast.

•  But it turned out to be very difficult
to optimize deep autoencoders
using backpropagation.
–  With small initial weights the

backpropagated gradient dies.
•  We now have a much better ways

to optimize them.
–  Use unsupervised layer-by-

layer pre-training.
–  Or just initialize the weights

carefully as in Echo-State Nets.

The first really successful deep autoencoders
(Hinton & Salakhutdinov, Science, 2006)

 784 à 1000 à 500 à 250
 30 linear units
 784 ß 1000 ß 500 ß 250

 We train a stack of 4 RBM’s and then “unroll” them.
 Then we fine-tune with gentle backprop.

W1 W2 W3

W1
T W2

T W3
T

4W

TW4

A comparison of methods for compressing digit
images to 30 real numbers

real
data

30-D
deep auto

30-D
PCA

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15c
Deep autoencoders for document retrieval and

visualization

How to find documents that are similar to a query document

•  Convert each document into a “bag of words”.
–  This is a vector of word counts ignoring order.
–  Ignore stop words (like “the” or “over”)

•  We could compare the word counts of the query
document and millions of other documents but this
is too slow.
–  So we reduce each query vector to a much

smaller vector that still contains most of the
information about the content of the document.

fish
cheese
vector
count
school
query
reduce
bag
pulpit
iraq
word

0
0
2
2
0
2
1
1
0
0
2

How to compress the count vector

•  We train the neural network to
reproduce its input vector as its
output

•  This forces it to compress as
much information as possible
into the 10 numbers in the
central bottleneck.

•  These 10 numbers are then a
good way to compare
documents.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

10

input
vector

output
vector

The non-linearity used for reconstructing bags of words

•  Divide the counts in a bag of words
vector by N, where N is the total number
of non-stop words in the document.
–  The resulting probability vector gives

the probability of getting a particular
word if we pick a non-stop word at
random from the document.

•  At the output of the autoencoder, we use
a softmax.
–  The probability vector defines the

desired outputs of the softmax.

•  When we train the first
RBM in the stack we use
the same trick.
–  We treat the word

counts as probabilities,
but we make the visible
to hidden weights N
times bigger than the
hidden to visible
because we have N
observations from the
probability distribution.

Performance of the autoencoder at document
retrieval

•  Train on bags of 2000 words for 400,000 training cases of business
documents.
–  First train a stack of RBM’s. Then fine-tune with backprop.

•  Test on a separate 400,000 documents.
–  Pick one test document as a query. Rank order all the other test

documents by using the cosine of the angle between codes.
–  Repeat this using each of the 400,000 test documents as the

query (requires 0.16 trillion comparisons).
•  Plot the number of retrieved documents against the proportion that

are in the same hand-labeled class as the query document.
Compare with LSA (a version of PCA).

Retrieval performance on 400,000 Reuters business news stories

First compress all documents to 2 numbers using PCA on
log(1+count). Then use different colors for different categories.

First compress all documents to 2 numbers using deep auto.
Then use different colors for different document categories

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15d
Semantic hashing

Finding binary codes for documents

•  Train an auto-encoder using 30 logistic

units for the code layer.
•  During the fine-tuning stage, add noise

to the inputs to the code units.
–  The noise forces their activities to

become bimodal in order to resist
the effects of the noise.

–  Then we simply threshold the
activities of the 30 code units to get
a binary code.

•  Krizhevsky discovered later that its
easier to just use binary stochastic
units in the code layer during training.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

30 code

Using a deep autoencoder as a hash-function for
finding approximate matches

hash
function

supermarket
search

Another view of semantic hashing

•  Fast retrieval methods typically work by intersecting stored lists that
are associated with cues extracted from the query.

•  Computers have special hardware that can intersect 32 very long
lists in one instruction.
–  Each bit in a 32-bit binary code specifies a list of half the

addresses in the memory.
•  Semantic hashing uses machine learning to map the retrieval

problem onto the type of list intersection the computer is good at.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15e
Learning binary codes for image retrieval

Binary codes for image retrieval

•  Image retrieval is typically done by using the captions. Why not use
the images too?
–  Pixels are not like words: individual pixels do not tell us much

about the content.
–  Extracting object classes from images is hard (this is out of date!)

•  Maybe we should extract a real-valued vector that has information
about the content?
–  Matching real-valued vectors in a big database is slow and

requires a lot of storage.
•  Short binary codes are very easy to store and match.

A two-stage method

•  First, use semantic hashing with 28-bit binary codes to get a long
“shortlist” of promising images.

•  Then use 256-bit binary codes to do a serial search for good
matches.
–  This only requires a few words of storage per image and the

serial search can be done using fast bit-operations.
•  But how good are the 256-bit binary codes?

–  Do they find images that we think are similar?

Krizhevsky’s deep autoencoder

1024 1024 1024

8192

4096

2048

1024

512

256-bit binary code The encoder has
about 67,000,000
parameters. There is no theory to

justify this architecture It takes a few days on
a GTX 285 GPU to
train on two million
images.

Reconstructions of 32x32 color images from 256-bit codes

retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

How to make image retrieval more sensitive to
objects and less sensitive to pixels

•  First train a big net to recognize
lots of different types of object in
real images.
–  We saw how to do that in lecture 5.

•  Then use the activity vector in the
last hidden layer as the
representation of the image.
–  This should be a much better

representation to match than the
pixel intensities.

•  To see if this approach is likely
to work, we can use the net
described in lecture 5 that won
the ImageNet competition.

•  So far we have only tried using
the Euclidian distance between
the activity vectors in the last
hidden layer.
–  It works really well!
–  Will it work with binary codes?

Leftmost column
is the search
image.

Other columns
are the images
that have the
most similar
feature activities
in the last hidden
layer.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15f
Shallow autoencoders for pre-training

RBM’s as autoencoders

•  When we train an RBM with one-
step contrastive divergence, it tries
to make the reconstructions look like
data.
–  It’s like an autoencoder, but it’s

strongly regularized by using
binary activities in the hidden
layer.

•  When trained with maximum
likelihood, RBMs are not like
autoencoders.

•  Maybe we can replace the
stack of RBM’s used for
pre-training by a stack of
shallow autoencoders?
–  Pre-training is not as

effective (for subsequent
discrimination) if the
shallow autoencoders
are regularized by
penalizing the squared
weights.

Denoising autoencoders (Vincent et. al. 2008)

•  Denoising autoencoders add
noise to the input vector
by setting many of its
components to zero (like
dropout, but for inputs).
–  They are still required to

reconstruct these
components so they must
extract features that capture
correlations between inputs.

•  Pre-training is very effective if we use
a stack of denoising autoencoders.
–  It’s as good as or better than pre-

training with RBMs.
–  It’s also simpler to evaluate the

pre-training because we can
easily compute the value of the
objective function.

–  It lacks the nice variational bound
we get with RBMs, but this is only
of theoretical interest.

Contractive autoencoders (Rifai et. al. 2011)

•  Another way to regularize an
autoencoder is to try to make
the activities of the hidden
units as insensitive as possible
to the inputs.
–  But they cannot just ignore

the inputs because they
must reconstruct them.

•  We achieve this by penalizing
the squared gradient of each
hidden activity w.r.t. the inputs.

•  Contractive autoencoders work very
well for pre-training.
–  The codes tend to have the

property that only a small
subset of the hidden units
are sensitive to changes in
the input.

–  But for different parts of the
input space, its a different
subset. The active set is sparse.

–  RBMs behave similarly.

Conclusions about pre-training

•  There are now many different
ways to do layer-by-layer pre-
training of features.
–  For datasets that do not

have huge numbers of
labeled cases, pre-training
helps subsequent
discriminative learning.

•  Especially if there is extra
data that is unlabeled but
can be used for pretraining.

•  For very large, labeled datasets,
initializing the weights used in
supervised learning by using
unsupervised pre-training is not
necessary, even for deep nets.
–  Pre-training was the first good

way to initialize the weights for
deep nets, but now there are
other ways.

•  But if we make the nets much larger
we will need pre-training again!

