Logic Programming
with Prolog

Prolog is based on three main ideas:

- **Logical Horn rules** (day before last)
- **Unification** (last day)
- **Top-down reasoning** (today)
Reasoning

• **Bottom-up** (or forward) reasoning: starting from the given facts, apply rules to infer everything that is true.

 e.g., Suppose the fact B and the rule $A \leftarrow B$ are given. Then infer that A is true.

• **Top-down** (or backward) reasoning: starting from the query, apply the rules in reverse, attempting only those lines of inference that are relevant to the query.

 e.g., Suppose the query is A, and the rule $A \leftarrow B$ is given. Then to prove A, try to prove B.
Bottom-up Inference

A rule base:

\[
\begin{align*}
A & \leftarrow B \quad (1) \\
B & \leftarrow C \quad (2) \\
C & \quad (3)
\end{align*}
\]

A bottom-up proof:

\[
\begin{align*}
\text{infer } A \\
\text{rule (1)} \\
\text{infer } B \\
\text{rule (2)} \\
\text{infer } C \\
\text{rule (3)} \\
\text{start}
\end{align*}
\]

So, A is proved
Top-Down Inference

A rule base:

\[
\begin{align*}
A & \leftarrow B \quad (1) \\
B & \leftarrow C \quad (2) \\
C & \quad (3)
\end{align*}
\]

A top-down proof:

goal A
 \downarrow
 rule (1)
 goal B
 \downarrow
 rule (2)
 goal C
 \downarrow
 rule (3)
 success

So, A is proved
Top-down vs Bottom-up Inference

- Prolog uses top-down inference, although some other logic programming systems use bottom-up inference (*e.g.*, Coral).

- Each has its own advantages and disadvantages:

 - Bottom-up may generate many irrelevant facts.

 - Top-down may explore many lines of reasoning that fail.

- Top-down and bottom-up inference are logically equivalent.

 i.e., they both prove the same set of facts.

- However, only top-down inference simulates program execution.

 i.e., execution is inherently top down, since it proceeds from the main procedure downwards, to subroutines, to sub-subroutines, etc.
Example 1
Bottom-up inference can derive many facts.

Rule base:

\[p(X,Y,Z) \leftarrow q(X), q(Y), q(Z). \]
\[q(a1). \]
\[q(a2). \]
\[\ldots \]
\[q(an). \]

Bottom-up inference derives \(n^3 \) facts of the form \(p(a_i,a_j,a_k) \):

\[p(a1, a1, a1) \]
\[p(a1, a1, a2) \]
\[p(a1, a2, a3) \]
\[\ldots \]
Example 2
Bottom-up inference can derive **infinitely** many facts.

Rule base:

\[p(f(x)) \leftarrow p(x). \]
\[p(a). \]

Derived facts:

\[p(f(a)) \]
\[p(f(f(a))) \]
\[p(f(f(f(a)))) \]
\[\ldots \]

In contrast, top-down inference derives only the facts requested by the user, e.g.

who does jane love?
what is john’s telephone number?
Example 3
Top-down inference may fail.

Rule base:

\[A \leftarrow B \quad (1) \]
\[B \leftarrow C \quad (2) \]

Failed line of inference:

\[
\begin{align*}
\text{goal } A \\
\downarrow \text{ rule (1)} \\
\text{goal } B \\
\downarrow \text{ rule (2)} \\
\text{goal } C \\
\downarrow \text{ rule (3)} \\
\text{fail} \\
\text{(no rules infer C)}
\end{align*}
\]

So, A is not proved
Multiple Rules and Premises

A fact may be inferred by many rules. \textit{e.g.},

\begin{align*}
E & \leftarrow B \\
E & \leftarrow C \\
E & \leftarrow D
\end{align*}

A rule may have many premises. \textit{e.g.},

\begin{align*}
E & \leftarrow B \land C \land D
\end{align*}

In top-down inference, such rules give rise to

- inference trees
- backtracking
Example 1: Multiple Premises

Rule base:

(1) A ← B1 \(\land\) B2
(2) B1 ← C1 \(\land\) C2
(3) B2 ← C3 \(\land\) C4
C1 C2 C3 C4

Query: Is A true?

Goal A
Rule (1)
B1 \(\land\) B2

Goal B1
Rule (2)
C1 \(\land\) C2

Goal C1
success

Goal B2
Rule (3)
C3 \(\land\) C4

Goal C3
success

Goal C4
success

So, goal A is proved. (all paths must succeed)
Example 2: Multiple Rules

Rule base:

- $A \leftarrow B_1$
- $B_1 \leftarrow C_1$
- $B_2 \leftarrow C_3$
- $A \leftarrow B_2$
- $B_1 \leftarrow C_2$
- $B_2 \leftarrow C_4$
- C_4

Query: Is A true?

So, goal A is proved. (only one path must succeed)
Example 3: Variables

Rule base:

student(1234,sam). enrolled(1234,csc324).
student(3456,joe). enrolled(1234,csc364).
student(5678,lisa). enrolled(1234,csc378).
student(6789,bart). enrolled(3456,csc324).
 enrolled(3456,csc364).
 enrolled(5678,csc378).

takes(Name,Course) :- student(Number,Name),
 enrolled(Number,Course).

% i.e., view course enrollment in terms of
% student names, instead of student numbers.

Query:
Find N and C such that takes(N,C) is true.

Answer:
N=sam, C=csc324;
N=sam, C=csc364;
N=sam, C=csc378;
N=joe, C=csc324;
N=joe, C=csc364;
N=lisa, C=csc378;
no
Example 3 (continued)

Same rule base:

student(1234,sam). enrolled(1234,csc324).
student(3456,joe). enrolled(1234,csc364).
student(5678,lisa). enrolled(1234,csc378).
student(6789,bart). enrolled(3456,csc324).
enrolled(3456,csc364).
enrolled(5678,csc378).

takes(Name,Course) :- student(Number,Name), enrolled(Number,Course).

Query:
Find N such that takes(N,csc324) is true.

Answer:
N=sam;
N=joe;
no
Example 4: Backtracking

Rule base:

\[p(X) :- q(X), r(X). \]
\[q(d). \quad q(e). \quad q(f). \quad q(g). \]
\[r(e). \quad r(g). \]

Query: Find \(x \) such that \(p(x) \) is true.

\[p(X) \]
\[\downarrow \]
\[q(X), r(X) \]
\[\downarrow \]
\[X=d -> r(d) \text{ fail} \]
\[X=e -> r(e) \text{ success (print "X=e")} \]
\[X=f -> r(f) \text{ fail} \]
\[X=g -> r(g) \text{ success (print "X=g")} \]
Example 5: Backtracking

Rule base:

\[p(X) \leftarrow q(X), r(X,Y), s(Y) \].

\[q(a). \quad r(a,b). \quad r(c,b). \quad s(c). \]

\[q(c). \quad r(a,c). \quad r(c,c). \]

\[r(a,d). \]

Query: Find \(x \) such that \(p(x) \) is true.

\[p(X) \]

\[\rightarrow q(X), r(X,Y), s(Y) \].

\[\{ X/a \} \]

\[\{ X/c \} \]

\[r(a,Y), s(Y). \]

\[\{ Y/b \} \]

\[\{ Y/c \} \]

\[s(b) \quad s(c) \quad s(d) \]

\[\text{fail} \quad \text{success} \quad \text{fail} \]

\[r(c,Y), s(Y). \]

\[\{ Y/b \} \]

\[\{ Y/c \} \]

\[s(b) \quad s(c) \]

\[\text{fail} \quad \text{success} \]
Hints on Debugging

We can follow the execution of Prolog programs with write statements. *e.g.*,

Rule base:

\[
p(X) :- q(X), \text{write}(X), r(X).
\]

\[
q(a). \quad q(b). \quad q(c). \quad q(d). \quad q(e).
\]

\[
r(a). \quad r(d).
\]

Query: Find \(x \) such that \(p(x) \) is true.

Then Prolog prints:

\[
a
\]

\[
X = a
\]

\[
bcd
\]

\[
X = d
\]

\[
e
\]

\[
\text{no}
\]
Recursion in Prolog

If a predicate symbol occurs in both the head and body of a rule, then the rule is *recursive*.

For example,

\[
a(X) :- b(X,Y), a(Y).
\]

i.e., to prove \(a(X) \), Prolog must prove \(a(Y) \).

The predicate \(a \) acts like a recursive subroutine.

It is called a recursively defined predicate, or simply a recursive predicate.
Mutual Recursion

Recursion might be indirect, involving several rules. For example,

\[
\begin{align*}
 a(X) & : = b(X,Y), c(Y). \\
 c(Y) & : = d(Y,Z), a(Z).
\end{align*}
\]

Thus, to prove \(a(X) \),

- Prolog tries to prove \(c(Y) \) (and \(b(X,Y) \))
- so it tries to prove \(a(Z) \) (and \(d(Y,Z) \)).

i.e., to prove \(a(X) \), Prolog tries to prove \(a(Z) \).

The predicates \(a \) and \(c \) are said to be mutually recursive.
Non-Linear Recursion

When the head predicate appears multiple times in the body of a rule, then the recursion is said to be \textit{non-linear}.

For example,

\[
a(X) :- b(X,Y), a(Y), c(Y,Z), a(Z).
\]

i.e., to prove \(a(X)\), Prolog tries to prove \textit{both} \(a(Y)\) and \(a(Z)\).

This generates a \textit{recursive proof tree}.
Example (Linear Recursion)

A stack of 4 toy blocks.

```
   a
   b
   c
   d
```

Rules:

1. `above(X,Y) :- on(X,Y).`
2. `above(X,Z) :- on(X,Y), above(Y,Z).`
3. `on(a,b).`
4. `on(b,c).`
5. `on(c,d).`

Query: `?- above(a,d)`

Use top-down inference.
All leaves are true, so the root is true, i.e., above(a,d) is true.
Observation

Changing the order of rules and/or rule premises can cause problems for Prolog. Example:

(1) above(X,Z) :- above(Y,Z), on(X,Y).
(2) above(X,Y) :- on(X,Y).

Because Prolog processes premises from left to right, and rules from first to last, rule (1) causes an infinite loop.
This is a flaw in Prolog.
Beyond Horn Logic

• So far, we have studied what is known as *pure* logic programming, in which all the rules are Horn.

• For some applications, however, we need to go beyond this.

• For instance, we often need
 – Negation
 – Existential quantification
 – Arithmetic

• Fortunately, these can easily be accommodated by simple extensions to the logic-programming framework,
Negation in Prolog

- Prolog uses negation as failure.

- *I.e.*, if you cannot prove something is true, then assume it is false. *E.g.*, unless we have reason to believe otherwise, we assume the sun will rise tomorrow.

- This is NOT logical negation, but it is easy to implement, and it is typical of much common-sense reasoning.

- In Prolog, negation may appear only in queries and in rule bodies.

- For example, the rule

 \[a \leftarrow b \land \sim c \]

 is written in Prolog as

 \[a : - b, \text{not } c. \]

 and it means, "infer \(a \) if \(b \) can be inferred and \(c \) cannot be inferred."
Example

loves(bill,X) :- pretty(X), female(X),
 not loves(tom,X).

i.e., Bill loves any pretty female, unless Tom loves her.

loves(tom,X) :- famous(X), female(X),
 not dead(X).

i.e., Tom loves any famous living female.

female(marilyn-monroe). famous(marilyn-monroe).
female(cindy-crawford). famous(cindy-crawford).
female(martha-stewart). famous(martha-stewart).
female(girl-next-door).

pretty(marilyn-monroe). dead(marilyn-monroe).
pretty(cindy-crawford).
pretty(girl-next-door).

| ?- loves(tom,X).
 X = cindy-crawford;
 X = martha-stewart;
 no

| ?- loves(bill,X).
 X = marilyn-monroe;
 X = girl-next-door;
 no
Safety

Consider the following rule:

(*) \(\text{hates}(\text{tom}, X) :\neg \text{loves}(\text{tom}, X). \)

This may NOT be what we want, for several reasons:

- The answer is \emph{infinite}, since for any person \(p \) not mentioned in the database, we cannot infer \(\text{loves}(\text{tom}, p) \), so we must infer \(\text{hates}(\text{tom}, p) \).

Rule (*) is therefore said to be \emph{unsafe}.

- The rule does not require \(x \) to be a person. \emph{e.g.}, since we cannot infer

 \[
 \begin{align*}
 \text{loves}(\text{tom}, \text{hammer}) \\
 \text{loves}(\text{tom}, \text{verbs}) \\
 \text{loves}(\text{tom}, \text{green}) \\
 \text{loves}(\text{tom}, \text{abc})
 \end{align*}
 \]

we must infer that \text{tom} hates all these things.
Safety (Cont’d)

To avoid these problems, rules with negation should be guarded:

\[
\text{hates(tom,X)} :\text{ female(x), pretty(X), not loves(tom,X).}
\]

\text{i.e., Tom hates every pretty female whom he does not love.}

Here, female and pretty are called guard literals. They guard against safety problems by binding x to specific values in the database.
Quantified Rule Bodies

∀X [happy(X) ← ∀Y loves(Y, X)]

i.e., A person is happy if everyone loves him. This rule is not Horn.

∀X [happy(X) ← ∃Y loves(Y, X)]

i.e., A person is happy if someone loves him. This rule is not Horn either, but it is equivalent to the following Horn rule:

∀X ∀Y [happy(X) ← loves(Y, X)]

Why? (Left as an exercise)

Examples:

loves(bill, mary) ⇒ happy(mary) \{X\mary, Y\bill\}
loves(bill, cindy) ⇒ happy(cindy) \{X\cindy, Y\bill\}
loves(tom, cindy) ⇒ happy(cindy) \{X\cindy, Y\tom\}

So, in Horn logic, existential quantifiers can appear in the premise of a rule.

They can also appear in queries, since a rule premise is just a query placed inside a rule.
Declarative Arithmetic

What we would like:

- Given a set of equations with variables, find values of the variables that satisfy the equations.

 eg., query: \(X + 3 = 5 \).
 answer: \(X = 2 \)

 query: \(X + Y = 1, \ X - Y = 2 \).
 answer: \(X = 3/2, \ Y = -1/2 \)

 query: \(X^2 = 4 \).
 answers: \(X = 2 \)
 \(X = -2 \)

 query: \(X + Y = 0, \ 2X + 2Y = 1 \).
 answer: no
 (no solutions since equations are contradictory)

 query: \(X = 1, \ X = 2 \).
 answer: no
Declarative Arithmetic (Cont’d)

There are two problems with this ideal.
(1) There may be infinitely many answers
eg. query: \(x + y = 0 \).
answers: \(x = 0, y = 0 \)
\(x = 1, y = -1 \)
\(x = 2, y = -2 \)
etc.

(2) The solutions may be difficult (or impossible) to compute
eg. query: \(xy + xy^2 + y^2x = 10 \).
\((xy)^2 + x^2 + y^2 = 6 \).
answers: ??

These are really problems in numerical analysis, not logic programming.
Dealing with These Problems

Prolog takes a simple, but practical approach (though somewhat procedural and non-logical).

- Require that queries have the form
 \[x_1 \text{ is } \phi_1, \ x_2 \text{ is } \phi_2, \ldots \ x_n \text{ is } \phi_n, \]
 where each \(\phi_i \) is an arithmetic expression and each \(x_i \) is a variable or a constant.

This query is interpreted to mean
\[(x_1 = \phi_1) \land (x_2 = \phi_2) \land \ldots \land (x_n = \phi_n). \]
This is processed from left to right (as usual):

First \(x_1 \) is set to the value of \(\phi_1 \)
then \(x_2 \) is set to the value of \(\phi_2 \)

...
\(x_n \) is set to the value of \(\phi_n \).

Note: once a variable is assigned a value, it is fixed, i.e., it cannot change.
Examples

|? - X is 5+7.
 X = 12

|? - X is 5+7, Y is X-2.
 X = 12
 Y = 10
 (* left-to-right evaluation *)

|? - Y is X-2, X is 5+7.
 no
 (* X is unbound here *)

|? - 7 is 4+3.
 yes

|? - 8 is 4+3.
 no

A variable can only be given one value. e.g.,

|? - X is 4, X is 5.
 no

i.e., there is no value of X such that

\[X = 4 \land X = 5. \]
Arithmetic in Rule Bodies

\[\text{square}(X,Y) :- Y \text{ is } X \times X. \]

e.g. \texttt{l? - } \text{square}(5,Y).
 \begin{align*}
 &Y = 25 \\
 &\text{l? - } \text{square}(5,25).
 &\text{yes} \\
 &\text{l? - } \text{square}(5,13).
 &\text{no} \\
 &\text{l? - } \text{square}(X,25) \\
 &\text{Error: } X \text{ is unbound.}
\end{align*}

i.e., The query \texttt{square}(X,25) becomes the subquery \texttt{25 is } X \times X, in which \texttt{x} is unbound.