Reading: Sethi, Chapter 11.

- Overview
- Predicate Calculus
- Substitution and Unification
- Introduction to Prolog
- Prolog Inference Rules
- Programming in Prolog
 - Recursion
 - List Processing
 - Arithmetic
 - Higher-order programming
 - Miscellaneous functions
- Conclusion
Prolog

Programming in Logic

• Idea emerged in early 1970’s; most work done at Univ. of Edinburgh.

• Based on a subset of first-order logic.
 – Feed it theorems and pose queries, system does the rest.

• main uses:
 – Originally, mainly for natural language processing.
 – Now finding uses in database systems and even rapid prototyping systems of industrial software.

• Popular languages: Prolog, XSB, LDL, Coral, Datalog, SQL.
Logic Programming Framework

Query:
Is \(q(X_1, \ldots, X_N) \) true?

Programming Environment

Knowledge Base:

\textit{Facts & Rules}

Proof Procedure

Answer:
“\textit{Yes}/\textit{No}”
& variable bindings
Declarative Languages

In its purest form, Logic programming is an example of *declarative programming*.

Popular in database systems and artificial intelligence.

Declarative specifications: Specify what you want, but not how to compute it.

Example. Find x and y such that

\[
\begin{align*}
3x + 2y &= 1 \\
x - y &= 4
\end{align*}
\]

A method (program) for solving these is how to get values for x and y. But all we gave was a *specification*, or *declaration* of what we want. Hence the name.
Examples

• "Retrieve the telephone number of the person whose name is Tom Smith" (easy)

• "Retrieve the telephone number of the person whose address is 13 Black St" (hard)

• "Retrieve the name of the person whose telephone number is 123-3445" (hard)

Each command specifies \textit{what} we want but not \textit{how} to get the answer. A database system would use a different algorithm for each of these cases.

Can also return multiple answers:
• "Retrieve the names of \textit{all} people who live on Oak St."
Algorithm = Logic + Control

- Users specify “logic” — what the algorithm does — using logical rules and facts.

- “Control” — how the algorithm is to be implemented — is built into Prolog.

i.e., Search procedures are built into Prolog. They apply logical rules in a particular order to answer user questions.

Example. P if Q₁ and Q₂ and ... and Qₖ can be read as

to deduce P:

deduce Q₁

deduce Q₂

...
deduce Qₖ

Users specify what they want using classical first-order logic (predicate calculus).
Classical First-Order Logic

- The simplest kind of logical statement is an atomic formula. *e.g.*,

 man(tom) (tom is a man)

 woman(mary) (mary is a woman)

 married(tom, mary)
 (tom and mary are married)

- More complex formulas can be built up using logical connectives: \land, \lor, \sim, $\forall X$, $\exists X$. *e.g.*,

 smart(tom) \lor dumb(tom)

 smart(tom) \lor tall(tom)

 \sim dumb(tom)

 $\exists X$ married(tom, X)
 (tom is married to something)

 $\forall X$ loves(tom, X)
 (tom loves everything)

 $\exists X$ [married(tom, X) \land female(X) \land human(X)]
 (tom is married to a human female)
Logical Implication

rich(tom) \lor \sim\text{smart}(tom)

This implies that if tom is smart, then he must be rich. So, we often write this as

rich(tom) \leftarrow \text{smart}(tom)

In general, \(P \leftarrow Q \) and \(Q \to P \) are abbreviations for \(P \lor \sim Q \).

For example,

\[\forall X [(\text{person}(X) \land \text{smart}(X)) \to \text{rich}(X)] \]

(every person who is smart is also rich)

\[\exists X \ \text{mother}(john,X) \]

(john has a mother)

\[\exists X [\text{mother}(john,X) \land \forall Y \text{mother}(john,Y) \to Y = X] \]

(john has exactly one mother)
Horn Rules

Logic programming is based on formulas called Horn rules. These have the form

\[\forall x_1 \ldots x_k \ [A \leftarrow B_1 \land B_2 \ldots \land B_j] \]

where \(k, j \geq 0 \).

For example,

\[\forall x, y \ [A(x) \leftarrow B(x, y) \land C(y)] \]
\[\forall x \ [A(x) \leftarrow B(x)] \]
\[\forall x \ [A(x, d) \leftarrow B(x, e)] \]
\[A(c, d) \leftarrow B(d, e) \]
\[\forall x \ A(x) \]
\[\forall x \ A(x, d) \]
\[A(c, d) \]

Note that atomic formulas are also Horn rules, often called facts.

A set of Horn rules is called a Logic Program.
Logical Inference with Horn Rules

Logic Programming is based on a simple idea: From rules and facts derive more facts

Example 1. Given the facts \(A, B, C, D \), and these rules:

\[
\begin{align*}
(1) & \quad E \leftarrow A \land B \\
(2) & \quad F \leftarrow C \land D \\
(3) & \quad G \leftarrow E \land F
\end{align*}
\]

From (1), derive \(E \)
From (2), derive \(F \)
From (3), derive \(G \)

Example 2. Given these facts:

\[
\begin{align*}
\text{man(plato)} & \quad (\text{“plato is a man”}) \\
\text{man(socrates)} & \quad (\text{“socrates is a man”})
\end{align*}
\]

and this rule:

\[
\forall X \ [\text{man}(X) \rightarrow \text{mortal}(X)]
\]

(“all men are mortal”)

derive: \(\text{mortal(plato)}, \ \text{mortal(socrates)} \).
Recursive Inference

Example.

Given:

\[\forall X \ [\text{mortal}(X) \rightarrow \text{mortal(son_of}(X))] \]
\[\text{mortal}(\text{plato}) \]

Derive:

\[\text{mortal}(\text{son_of}(\text{plato})) \]
 (using \(X = \text{plato} \))

\[\text{mortal}(\text{son_of}(\text{son_of}(\text{plato}))) \]
 (using \(X = \text{son_of}(\text{plato}) \))

\[\text{mortal}(\text{son_of}(\text{son_of}(\text{son_of}(\text{plato})))) \]
 (using \(X = \text{son_of}(\text{son_of}(\text{plato})) \))

...

This kind of inference simulates recursive programs (as we shall see).
Logic Programming

Horn rules correspond to programs, and a form of Horn inference corresponds to execution.

For example, consider the following rule:

$$\forall X, Y \ p(X) \leftarrow q(X,Y) \land r(X,Y) \land s(X,Y)$$

Later, we shall see that this rule can be interpreted as a program, where

- p is the program name,
- q, r, s are subroutine names,
- X is a parameter of the program, and
- Y is a local variable.
Non-Horn Formulas

The following formulas are *not* Horn:

\[A \rightarrow \sim B \]

\[A \lor B \]

\[A \lor B \leftarrow C \]

\[\exists X \ [A(X) \leftarrow B(X)] \]

\[A \leftarrow (B \leftarrow C) \]

\[\forall X \ [\text{flag}(X) \rightarrow [\text{red}(X) \lor \text{white}(X)]] \]

("every flag is red or white")

\[\forall X \ \exists Y \ [\text{wife}(X) \rightarrow \text{married}(X,Y)] \]

("every wife is married to someone")
Non-Horn Inference

Inference with non-Horn formulas is more complex than with Horn rules alone.

Example.

\[
\begin{align*}
A & \leftarrow B \\
A & \leftarrow C \\
B \lor C & \quad \text{(non-Horn)}
\end{align*}
\]

We can infer \(A \), but must do case analysis:

- either \(B \) or \(C \) is true.
 - if \(B \) then \(A \)
 - if \(C \) then \(A \)

Therefore, \(A \) is true in all cases.

Non-Horn formulas do not correspond to programs, and non-Horn inference does not correspond to execution.
Logical Equivalence

Many non-Horn formulas can be put into Horn form using two methods:

(1) logical equivalence
(2) skolemization

Example 1. Logical Equivalence.
\[
\sim A \leftarrow \sim B \equiv \sim A \lor \sim(\sim B) \\
\equiv \sim A \lor B \\
\equiv B \lor \sim A \\
\text{(Horn)} \quad \equiv B \leftarrow A
\]

Logical Laws:
\[
\sim \sim A \equiv A \\
\sim (A \lor B) \equiv \sim A \land \sim B \\
A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \\
A \leftarrow B \equiv A \lor \sim B
\]

Example 2. Logical Equivalence.
\[
A \leftarrow (B \lor C) \equiv A \lor \sim(B \lor C) \\
\equiv A \lor (\sim B \land \sim C) \\
\equiv (A \lor \sim B) \land (A \lor \sim C) \\
\text{(Horn)} \quad \equiv (A \leftarrow B) \land (A \leftarrow C)
\]
Example 3. Logical Equivalence.

\[
A \leftarrow (B \leftarrow C) \equiv A \lor \sim (B \leftarrow C) \\
\equiv A \lor \sim (B \lor \sim C) \\
\equiv A \lor (\sim B \land \sim \sim C) \\
\equiv A \lor (\sim B \land C) \\
\equiv (A \lor \sim B) \land (A \lor C)
\]
(non Horn) \equiv (A \leftarrow B) \land (A \lor C)

In general, rules of the following form cannot be converted into Horn form:

\[
\forall x[(A_1 \lor \ldots \lor A_n) \leftarrow (B_1 \land \ldots \land B_m)]
\]

For example,

\[
(A \lor B) \leftarrow (C \land D) \\
(A \lor B) \leftarrow C \\
(A \lor B) \\
\forall x \ [A(x) \lor B(x)] \leftarrow [C(x) \land D(x)]
\]

i.e., if it is possible to infer a non-trivial disjunction from a set of formulas, then the set is inherently non-Horn.

(A rule like \(p \lor q \leftarrow q \) infers a trivial disjunction, since the rule is a logical tautology. Such rules can simply be ignored.)
Skolemization

Non-Horn formulas like $\exists x \ A(x)$ can be converted to Horn form.

Example 1.

Replace (1) $\exists x \ \text{mother}(\text{john},x)$ \hspace{1cm} (non-Horn)
\hspace{1cm} with (2) $\text{mother}(\text{john},m)$ \hspace{1cm} (Horn)

Here, m is a new constant symbol, called a skolem constant, that stands for the (unknown) mother of john.

Note: (1) $\not\equiv$ (2), but they say (almost) the same thing. In particular, (1) can sometimes be replaced by (2) during inference, as we shall see.
Example 2. A non-Horn formula:

(3) \(\forall x \ [\text{person}(x) \rightarrow \exists y \ \text{mother}(x,y)] \)
 ("every person has a mother")

Let \(m(x) \) stand for the (unknown) mother of \(x \). Then, we can replace (3) by a Horn rule:

(4) \(\forall x \ [\text{person}(x) \rightarrow \text{mother}(x,m(x)) \])

\(m(x) \) is called a **skolem function**.

It is an artificial name we have created.

e.g., \(m(\text{mary}) \) denotes the mother of mary.
\(m(\text{tom}) \) denotes the mother of tom.
\(m(\text{jfk}) \) denotes the mother of jfk.

So, we only need \(\exists x \) because we don’t have a *name* for \(x \). By creating artificial names (skolem symbols), we can eliminate many \(\exists \)'s, and convert many formulas to Horn rules, which Prolog can then use.

Skolemization is a technical device for doing inference.
Inference with Skolemization

(1) $\forall X \ [\text{man}(X) \rightarrow \text{person}(X)]$
 ("every man is a person")

(2) $\forall X \ \exists Y \ [\text{person}(X) \rightarrow \text{mother}(X,Y)]$
 ("every person has a mother"—non Horn)

(3) $\forall X,Y \ [\text{mother}(X,Y) \rightarrow \text{loves}(Y,X)]$
 ("every mother loves her children")

(4) $\text{man}(\text{plato})$ ("plato is a man")

Question. $\exists Y \ \text{loves}(Y,\text{plato})$
 ("does someone love plato?")

Step 1. Skolemize (2) to get a Horn rule:
 (2') $\forall X \ [\text{person}(X) \rightarrow \text{mother}(X, \text{m}(X))]$

Step 2. Use Horn inference:

- $\text{person}(\text{plato})$ from (1)
- $\text{mother}(\text{plato}, \text{m}(\text{plato}))$ from (2')
- $\text{loves}(\text{m}(\text{plato}), \text{plato})$ from (3)

Thus. $\exists Y \ \text{loves}(Y,\text{plato})$

i.e., $Y = \text{m}(\text{plato}).$ So, answer is YES.
Skolem Dependencies

(1) \(\exists x \, \forall y \, p(x, y) \)
 skolemizes to \(\forall y \, p(a, y) \),
 where \(a \) is a skolem constant.

(2) \(\forall y \, \exists x \, p(x, y) \)
 skolemizes to \(\forall y \, p(b(y), y) \),
 where \(b \) is a skolem function.

 i.e., in (2), \(x \) depends on \(y \).
 But in (1), \(x \) is independent of \(y \).

(3) \(\forall x \, \forall y \, \exists z \, q(x, y, z) \)
 skolemizes to \(\forall x \, \forall y \, q(x, y, c(x, y)) \),
 where \(c \) is a skolem function of both \(x \) and \(y \).

 i.e., in (3), \(z \) depends on both \(x \) and \(y \).
Skolem Dependencies — Concrete Examples

\[\exists X \ \forall Y \ \text{loves}(X,Y) \quad (\text{“someone loves everybody”}) \]
\[\Rightarrow \ \forall Y \ \text{loves}(p,Y) \quad (\text{“p loves everybody”}) \]

\[\forall X \ \exists Y \ \text{mother}(X,Y) \quad (\text{“everyone has a mother”}) \]
\[\Rightarrow \ \forall X \ \text{mother}(X,m(X)) \]
\[\quad (\text{“m}(X) \text{ is the mother of } X”) \]

\[\forall X \ \forall Y \ \exists Z \ \text{owns}(X,Y) \ \rightarrow \ \text{document}(Z,X,Y) \]
\[\quad (\text{“if } X \text{ owns } Y, \text{ then there is a document, } Z, \text{ saying that } X \text{ owns } Y”) \]
\[\Rightarrow \ \forall X \ \forall Y \ \text{owns}(X,Y) \ \rightarrow \ \text{document}(\text{d}(X,Y),X,Y) \]
\[\quad (\text{“d}(X,Y) \text{ is a document saying that } X \text{ owns } Y”) \]