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Abstract
Recurrent Neural Networks (RNNs) are very
powerful sequence models that do not enjoy
widespread use because it is extremely diffi-
cult to train them properly. Fortunately, re-
cent advances in Hessian-free optimization have
been able to overcome the difficulties associated
with training RNNs, making it possible to apply
them successfully to challenging sequence prob-
lems. In this paper we demonstrate the power
of RNNs trained with the new Hessian-Free op-
timizer (HF) by applying them to character-level
language modeling tasks. The standard RNN ar-
chitecture, while effective, is not ideally suited
for such tasks, so we introduce a new RNN
variant that uses multiplicative (or “gated”) con-
nections which allow the current input charac-
ter to determine the transition matrix from one
hidden state vector to the next. After training
the multiplicative RNN with the HF optimizer
for five days on 8 high-end Graphics Processing
Units, we were able to surpass the performance
of the best previous single method for character-
level language modeling – a hierarchical non-
parametric sequence model. To our knowledge
this represents the largest recurrent neural net-
work application to date.

1. Introduction
Recurrent Neural Networks (RNNs) form an expressive
model family for sequence tasks. They are powerful be-
cause they have a high-dimensional hidden state with non-
linear dynamics that enable them to remember and process
past information. Furthermore, the gradients of the RNN
are cheap to compute with backpropagation through time.
Despite their attractive qualities, RNNs failed to become a
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mainstream tool in machine learning due to the difficulty
of training them effectively. The cause of this difficulty
is the very unstable relationship between the parameters
and the dynamics of the hidden states, which manifests it-
self in the “vanishing/exploding gradients problem” (Ben-
gio et al., 1994). As a result, there has been surprisingly lit-
tle research on standard RNNs in the last 20 years, and only
a few successful applications using large RNNs (Robin-
son, 2002; Pollastri et al., 2002), including a recent no-
table application of RNNs as a word-level language model
(Mikolov et al., 2010).

Recently, Martens (2010) developed a greatly improved
variant of Hessian-Free optimization (HF) which was pow-
erful enough to train very deep neural networks from ran-
dom initializations. Since an RNN can be viewed as an
extremely deep neural network with weight sharing across
time, the same HF optimizer should be able to train RNNs.
Fortunately, Martens & Sutskever (2011) were able to show
that this is indeed the case, and that this form of non-
diagonal, 2nd-order optimization provides a principled so-
lution to the vanishing gradients problem in RNNs. More-
over, with the addition of a novel damping mechanism,
Martens & Sutskever (2011) showed that the HF optimizer
is robust enough to train RNNs, both on pathological syn-
thetic datasets known to be impossible to learn with gra-
dient descent, and on complex and diverse real-world se-
quence datasets.

The goal of the paper is to demonstrate the power of large
RNNs trained with the new Hessian-Free optimizer by ap-
plying them to the task of predicting the next character in a
stream of text. This is an important problem because a bet-
ter character-level language model could improve compres-
sion of text files (Rissanen & Langdon, 1979) and make it
easier for people with physical disabilities to interact with
computers (Ward et al., 2000). More speculatively, achiev-
ing the asymptotic limit in text compression requires an
understanding that is “equivalent to intelligence” (Hutter,
2006). Good compression can be achieved by exploiting
simple regularities such as the vocabulary and the syntax of
the relevant languages and the shallow associations exem-
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plified by the fact that the word “milk” often occurs soon
after the word “cow”, but beyond a certain point any im-
provement in performance must result from a deeper un-
derstanding of the text’s meaning.

Although standard RNNs are very expressive, we found
that achieving competitive results on character-level lan-
guage modeling required the development of a different
type of RNN that was better suited to our application.
This new “MRNN” architecture uses multiplicative con-
nections to allow the current input character to determine
the hidden-to-hidden weight matrix. We trained MRNNs
on over a hundred of megabytes of text for several days
using 8 Graphics Processing Units in parallel to perform
significantly better than one of the best word-agnostic sin-
gle character-level language models: the sequence memo-
izer (Wood et al., 2009; Gasthaus et al., 2010), which is a
hierarchical nonparametric Bayesian method. It defines a
prior process on the set of predictions at every conceivable
context, with judiciously chosen details that make approx-
imate inference computationally tractable. The memoizer
induces dependencies between its predictions by making
similar predictions at similar contexts. Although intelli-
gent marginalization techniques are able to eliminate all
but a relatively small number of the random variables (so
the datastructures used scale linearly with the amount of
data), its memory requirements are still prohibitively ex-
pensive for large datasets, which is a direct consequence of
its nonparametric nature.

While our method performs at the state of the art for pure
character-level models, its compression performance falls
short of the best models which have explicit knowledge of
words, the most powerful of these being PAQ8hp12 (Ma-
honey, 2005). PAQ is a mixture model of a large number
of well-chosen context models whose mixing proportions
are computed by a neural network whose weights are a
function of the current context, and whose predictions are
further combined with a neural-network like model. Un-
like standard compression techniques, some of PAQ’s con-
text models not only consider contiguous contexts but also
contexts with “gaps”, allowing it to capture some types of
longer range structures cheaply. More significantly, PAQ
is not word-agnostic, because it uses a combination of
character-level and word-level models. PAQ also prepro-
cesses the data with a dictionary of common English words
which we disabled, because it gave PAQ an unfair advan-
tage over models that do not use such task-specific (and
indeed, English-specific) explicit prior knowledge. The nu-
merous mixture components of PAQ were chosen because
they improved performance on a development set, so in this
respect PAQ is similar in model complexity to the winning
entry of the netflix prize (Bell et al., 2007).

Finally, language models can be used to “generate” lan-

Figure 1. A Recurrent Neural Network is a very deep feedforward
neural network whose weights are shared across time. The non-
linear activation function used by the hidden units is the source of
the RNN’s rich dynamics.

guage, and to our surprise, the text generated by the
MRNNs we trained exhibited a significant amount of inter-
esting and high-level linguistic structure, featuring a large
vocabulary, a considerable amount of grammatical struc-
ture, and a wide variety of highly plausible proper names
that were not in the training set. Mastering the vocabulary
of English did not seem to be a problem for the MRNN: it
generated very few uncapitalized non-words, and those that
it did generate were often very plausible, like “homosoma-
list” or “un-ameliary”. Of particular interest was the fact
that the MRNN learned to balance parentheses and quotes
over long distances (e.g., 30 characters). A character-
level N -gram language model could only do this by mod-
eling 31-grams, and neither Memoizer nor PAQ are rep-
resentationally capable of balancing parentheses because
of their need for exact context matches. In contrast, the
MRNN’s nonlinear dynamics enables it to extract higher
level “knowledge” from the text, and there are no obvious
limits to its representational power because of the ability of
its hidden states to perform general computation.

2. Recurrent Neural Networks
A Recurrent Neural Network is a straightforward adapta-
tion of the standard feed-forward neural network to allow
it to model sequential data. At each timestep, the RNN
receives an input, updates its hidden state, and makes a
prediction (fig. 1). The RNN’s high dimensional hidden
state and nonlinear evolution endow it with great expres-
sive power, enabling the hidden state of the RNN to inte-
grate information over many timesteps and use it to make
accurate predictions. Even if the non-linearity used by each
unit is quite simple, iterating it over time leads to very rich
dynamics.

The standard RNN is formalized as follows: Given a se-
quence of input vectors (x1, . . . , xT

), the RNN computes a
sequence of hidden states (h1, . . . , hT

) and a sequence of
outputs (o1, . . . , oT ) by iterating the following equations
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In these equations, W
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is the input-to-hidden weight ma-
trix, W

hh

is the hidden-to-hidden (or recurrent) weight ma-
trix, W

oh

is the hidden-to-output weight matrix, and the
vectors b
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are the biases. The undefined expres-
sion W

hh

h

t�1 at time t = 1 is replaced with a special ini-
tial bias vector, hinit, and the tanh nonlinearity is applied
coordinate-wise.

The gradients of the RNN are easy to compute via back-
propagation through time (Rumelhart et al., 1986; Werbos,
1990)1, so it may seem that RNNs are easy to train with
gradient descent. In reality, the relationship between the
parameters and the dynamics of the RNN is highly unsta-
ble which makes gradient descent ineffective. This intu-
ition was formalized by Hochreiter (1991) and Bengio et al.
(1994) who proved that the gradient decays (or, less fre-
quently, blows up) exponentially as it is backpropagated
through time, and used this result to argue that RNNs can-
not learn long-range temporal dependencies when gradi-
ent descent is used for training. In addition, the occasional
tendency of the backpropagated gradient to exponentially
blow-up greatly increases the variance of the gradients and
makes learning very unstable. As gradient descent was the
main algorithm used for training neural networks at the
time, these theoretical results and the empirical difficulty
of training RNNs led to the near abandonment of RNN re-
search.

One way to deal with the inability of gradient descent to
learn long-range temporal structure in a standard RNN is
to modify the model to include “memory” units that are
specially designed to store information over long time pe-
riods. This approach is known as “Long-Short Term Mem-
ory” (Hochreiter & Schmidhuber, 1997) and has been suc-
cessfully applied to complex real-world sequence mod-
eling tasks (e.g., Graves & Schmidhuber, 2009). Long-
Short Term Memory makes it possible to handle datasets
which require long-term memorization and recall but even
on these datasets it is outperformed by using a standard
RNN trained with the HF optimizer (Martens & Sutskever,
2011).

Another way to avoid the problems associated with back-
propagation through time is the Echo State Network (Jaeger
& Haas, 2004) which forgoes learning the recurrent con-
nections altogether and only trains the non-recurrent out-
put weights. This is a much easier learning task and it
works surprisingly well provided the recurrent connections

1In contrast, Dynamic Bayes Networks (Murphy, 2002), the
probabilistic analogues of RNNs, do not have an efficient algo-
rithm for computing their gradients.

Figure 2. An illustration of the significance of the multiplicative
connections (the product is depicted by a triangle). The presence
of the multiplicative connections enables the RNN to be sensitive
to conjunctions of context and character, allowing different con-
texts to respond in a qualitatively different manner to the same
input character.

are carefully initialized so that the intrinsic dynamics of the
network exhibits a rich reservoir of temporal behaviours
that can be selectively coupled to the output.

3. The Multiplicative RNN
Having applied a modestly-sized standard RNN archi-
tecture to the character-level language modeling problem
(where the target output at each time step is defined as the
the input character at the next time-step), we found the
performance somewhat unsatisfactory, and that while in-
creasing the dimensionality of the hidden state did help,
the per-parameter gain in test performance was not suffi-
cient to allow the method to be both practical and com-
petitive with state-of-the-art approaches. We address this
problem by proposing a new temporal architecture called
the Multiplicative RNN (MRNN) which we will argue is
better suited to the language modeling task.

3.1. The Tensor RNN

The dynamics of the RNN’s hidden states depend on the
hidden-to-hidden matrix and on the inputs. In a standard
RNN (as defined by eqs. 1-2), the current input x

t

is first
transformed via the visible-to-hidden weight matrix W

hx

and then contributes additively to the input for the current
hidden state. A more powerful way for the current input
character to affect the hidden state dynamics would be to
determine the entire hidden-to-hidden matrix (which de-
fines the non-linear dynamics) in addition to providing an
additive bias.

One motivation for this approach came from viewing an
RNN as a model of an unbounded tree in which each node
is a hidden state vector and each edge is labelled by a char-
acter that determines how the parent node gives rise to the
child node. This view emphasizes the resemblance of an
RNN to a Markov model that stores familiar strings of char-
acters in a tree, and it also makes it clear that the RNN tree
is potentially much more powerful than the Markov model
because the distributed representation of a node allows dif-
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ferent nodes to share knowledge. For example, the charac-
ter string “ing” is quite probable after “fix” and also quite
probable after “break”. If the hidden state vectors that rep-
resent the two histories “fix” and “break” share a common
representation of the fact that this could be the stem of a
verb, then this common representation can be acted upon
by the character “i” to produce a hidden state that predicts
an “n”. For this to be a good prediction we require the
conjunction of the verb-stem representation in the previous
hidden state and the character “i”. One or other of these
alone does not provide half as much evidence for predict-
ing an “n”: It is their conjunction that is important. This
strongly suggests that we need a multiplicative interaction.
To achieve this goal we modify the RNN so that its hidden-
to-hidden weight matrix is a (learned) function of the cur-
rent input x

t

:
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These are identical to eqs. 1 and 2, except that W
hh

is re-
placed with W

(xt)
hh

, allowing each character to specify a
different hidden-to-hidden weight matrix.

It is natural to define W
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hh

using a tensor. If we store
M matrices, W (1)
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, . . . ,W
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, where M is the number of
dimensions of x

t

, we could define W

(xt)
hh

by the equation

W

(xt)
hh

=

MX

m=1

x

(m)
t

W

(m)
hh

(5)

where x

(m)
t

is the m-th coordinate of x
t

. When the input
x

t

is a 1-of-M encoding of a character, it is easily seen that
every character has an associated weight matrix and W

(xt)
hh

is the matrix assigned to the character represented by x

t

. 2

3.2. The Multiplicative RNN

The above scheme, while appealing, has a major drawback:
Fully general 3-way tensors are not practical because of
their size. In particular, if we want to use RNNs with a
large number of hidden units (say, 1000) and if the dimen-
sionality of x

t

is even moderately large, then the storage
required for the tensor W (xt)

hh

becomes prohibitive.

It turns out we can remedy the above problem by factoring
the tensor W (x)

hh

(e.g., Taylor & Hinton, 2009). This is done
by introducing the three matrices W

fx

, W
hf

, and W

fh

, and
reparameterizing the matrix W

(xt)
hh

by the equation

W

(xt)
hh

= W

hf

· diag(W
fx

x

t

) ·W
fh

(6)

2The above model, applied to discrete inputs represented with
their 1-of-M encodings, is the nonlinear version of the Observ-
able Operator Model (OOM; Jaeger, 2000) whose linear nature
makes it closely related to an HMM in terms of expressive power.

Figure 3. The Multiplicative Recurrent Neural Network “gates”
the recurrent weight matrix with the input symbol. Each triangle
symbol represents a factor that applies a learned linear filter at
each of its two input vertices. The product of the outputs of these
two linear filters is then sent, via weighted connections, to all the
units connected to the third vertex of the triangle. Consequently
every input can synthesize its own hidden-to-hidden weight ma-
trix by determining the gains on all of the factors, each of which
represents a rank one hidden-to-hidden weight matrix defined by
the outer-product of its incoming and outgoing weight-vectors to
the hidden units. The synthesized weight matrices share “struc-
ture” because they are all formed by blending the same set of rank
one matrices. In contrast, an unconstrained tensor model ensures
that each input has a completely separate weight matrix.

If the dimensionality of the vector W
fx

x

t

, denoted by F ,
is sufficiently large, then the factorization is as expressive
as the original tensor. Smaller values of F require fewer
parameters while hopefully retaining a significant fraction
of the tensor’s expressive power.

The Multiplicative RNN (MRNN) is the result of factoriz-
ing the Tensor RNN by expanding eq. 6 within eq. 3. The
MRNN computes the hidden state sequence (h1, . . . , hT

),
an additional “factor state sequence” (f1, . . . , fT ), and the
output sequence (o1, . . . , oT ) by iterating the equations

f
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which implement the neural network in fig. 3. The tensor
factorization of eq. 6 has the interpretation of an additional
layer of multiplicative units between each pair of consec-
utive layers (i.e., the triangles in fig. 3), so the MRNN ac-
tually has two steps of nonlinear processing in its hidden
states for every input timestep. Each of the multiplicative
units outputs the value f

t

of eq. 7 which is the product of
the outputs of the two linear filters connecting the multi-
plicative unit to the previous hidden states and to the inputs.

We experimentally verified the advantage of the MRNN
over the RNN when the two have the same number of pa-
rameters. We trained an RNN with 500 hidden units and
an MRNN with 350 hidden units and 350 factors (so the
RNN has slightly more parameters) on the “machine learn-
ing” dataset (dataset 3 in the experimental section). After
extensive training, the MRNN achieved 1.56 bits per char-
acter and the RNN achieved 1.65 bits per character on the
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test set.

3.3. The difficulty of learning multiplicative units

In an MRNN, the effective weight W (c)
ij

3 from hidden unit
i to hidden unit j contributed by character c is given by:

W

(c)
ij

=

X

f

W

if

W

fc

W

fj

(10)

This product of parameters makes gradient descent learning
difficult. If, for example, W

if

is very small and W

fj

is
very large we get a very large deriviative for the very small
weight and a very small derivative for the very large weight.
Fortunately, this type of difficulty is exactly what second-
order methods are good at handling, so multiplicative units
should be better handled by a 2nd-order approach like the
HF optimizer.

4. The RNN as a Generative Model
The goal of character-level language modeling is to pre-
dict the next character in a sequence. More formally,
given a training sequence (x1, . . . , xT

), the RNN uses
the sequence of its output vectors (o1, . . . , oT ) to ob-
tain a sequence of predictive distributions P (x

t+1|xt

) =

softmax(o
t

), where the softmax distribution is defined by
P (softmax(o

t

) = j) = exp(o

(j)
t

)/

P
k

exp(o

(k)
t

). The lan-
guage modeling objective is to maximize the total log prob-
ability of the training sequence

P
T�1
t=0 logP (x

t+1|xt

),
which implies that the RNN learns a probability distribu-
tion over sequences. Even though the hidden units are de-
terministic, we can sample from an MRNN stochastically
because the states of its output units define the conditional
distribution P (x

t+1|xt

). We can sample from this condi-
tional distribution to get the next character in a generated
string and provide it as the next input to the RNN. This
means that the RNN is a directed non-Markov model and,
in this respect, it resembles the sequence memoizer (Wood
et al., 2009).

5. The experiments
The goal of our experiments is to demonstrate that the
MRNN, when trained by HF, learns high-quality language
models. We demonstrate this by comparing the MRNN to
the sequence memoizer and to PAQ on three real-world lan-
guage datasets. After splitting each dataset into a training
and test set, we trained a large MRNN, a sequence memo-
izer4, and PAQ, and report the bits per character (bpc) each
model achieves on the test set.

3We slightly abuse notation, using W (c)
ij to stand for W (c)

hh ij .
4Which has no hyper-parameters and strictly speaking isn’t

’trained’ but rather conditioned the training set.

Owing to its nonparametric nature and the nature of the
data-structures it uses, the sequence memoizer is very
memory intensive, so it can only be applied to training
datasets of roughly 130MB on a machine with 32GB of
RAM. In contrast, the MRNN can be applied to datasets
of unlimited size although it typically requires consider-
ably more total FLOPS to achieve good performance (but,
unlike the memoizer, it is easily parallelized). However,
to make the experimental comparison fair, we train the
MRNN, the memoizer, and PAQ on datasets of the same
size.

5.1. The datasets

We now describe the datasets. Each dataset is a long
string of characters from an 86-character alphabet of about
100MB that includes digits and punctuation, together with
a special symbol which indicates that the character in the
original text was not one of the other 85 characters in our
alphabet. The last 10 million characters of each dataset are
used as a test set.

1. The first dataset is a sequence of characters from the En-
glish Wikipedia. We removed the XML and the Wikipedia
markup to clean the dataset. Since Wikipedia is extremely
nonuniform, we randomly permuted its articles before par-
titioning it into a train and a test set.

2. The second dataset is a collection of articles from the
New York Times (Sandhaus, 2008).

3. The third dataset is a corpus of machine learning pa-
pers. We constructed this dataset by downloading every
NIPS and JMLR paper, and converting them to plain text
using the pdftotext utility. We then translated a large num-
ber of special characters to their ascii equivalents (includ-
ing non-ascii punctuation, greek letters, and the “fi” and
“if” symbol) to clean the dataset, and removed most of the
unstructured text by using only sentences consisting of at
least 70% alphanumeric characters. Finally, we randomly
permuted the papers.

The first two corpora are subsets of larger corpora (over
1GB large), but the semi-online nature of our optimizer
makes it easy to train the MRNN on a dataset of any size.

5.2. Training details

To compute the exact gradient of the log probability of the
training set (eq. 4), the MRNN needs to process the entire
training set sequentially and store the hidden state sequence
in order to apply backpropagation-through-time. This is in-
feasible due to the size of the training set but it is also un-
necessary: Training the MRNN on many shorter sequences
is just as effective, provided they are several hundred char-
acters or more long. If the sequences are too short, we fail
to utilize the ability of the HF optimizer to capture long-
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Table 1. This table shows the test bits per character for each ex-
periment, with the training bits in brackets (where available). The
MRNN achieves lower bits per character than the sequence mem-
oizer but higher than PAQ on each of the three datasets. The
MRNN (full set) column refers to MRNNs trained on the larger
(1GB) training corpora (except for the ML dataset which is not a
subset of a larger corpus). Note, also, that the improvement re-
sulting from larger dataset is modest, implying that the an MRNN
with 1500 units and factors is fairly well-trained with 100MB of
text.

DATA SET MEMOIZER PAQ MRNN MRNN
(FULL SET)

WIKI 1.66 1.51 1.60 (1.53) 1.55 (1.54)
NYT 1.49 1.38 1.48 (1.44) 1.47 (1.46)
ML 1.33 1.22 1.31 (1.27)

term dependencies spanning hundreds of timesteps.

An advantage of using a large number of relatively short
sequences over using a single long sequence is that the for-
mer is much easier to parallelize. This is essential, since
our preliminary experiments suggested that HF applied to
MRNNs works best when the gradient is computed us-
ing millions of characters and the curvature-matrix vec-
tor products are computed using hundreds of thousands of
characters. Using a highly parallel system (consisting of
8 high-end GPUs with 4GB of RAM each), we computed
the gradient on 160·300=48000 sequences of length 250,
of which 8·300=2400 sequences were used to compute the
curvature-matrix vector products that are needed for the HF
optimizer (Martens & Sutskever, 2011) (so each GPU pro-
cesses 300 sequences at a time).

The first few characters of any sequence are much harder
to predict because they do not have a sufficiently large con-
text, so it is not beneficial to have the MRNN spend neural
resources predicting these characters. We take this effect
into account by having the MRNN predict only the last 200
timesteps of the 250-long training sequences, thus provid-
ing every prediction with at least 50 characters of context.

The Hessian-Free optimizer (Martens, 2010) and its RNN-
specialized variant (Martens & Sutskever, 2011) have a
small number of meta-parameters that must be specified.
We set the structural damping coefficient µ to 0.1, and ini-
tialized � to 10 (see Martens & Sutskever (2011) for a de-
scription of these meta-parameters). Our HF implemen-
tation uses a different subset of the training data at every
iteration, so at a coarse temporal scale it is essentially on-
line. In this setup, training lasted roughly 5 days for each
dataset.

We found that a total of 160·150 weight updates was suffi-

cient to adequately train an MRNN. More specifically, we
used 160 steps of HF, with each of these steps using a max-
imum of 150 conjugate gradient iterations to approach the
minimum of the quadratic Gauss-Newton-based approxi-
mation to the objective function, which remains fixed dur-
ing the conjugate gradient iterations. The small number of
weight updates, each requiring a massive amount of com-
putation, makes the HF optimizer much easier to parallelize
than stochastic gradient descent.

In all our experiments we use MRNNs with 1500 hidden
units and 1500 factors (F ), which have 4,900,000 parame-
ters. The MRNNs were initialized with sparse connections:
each unit starts out with 15 nonzero connections to other
units (see Martens & Sutskever, 2011). Note that if we un-
roll the MRNN in time (as in fig. 3) we obtain a neural
network with 500 layers of size 1500 if we view the mul-
tiplicative units f

t

as layers. This is arguably the deepest
and largest neural network ever trained.

5.3. The results

The main experimental results are shown in table 5.2. We
see that the MRNN predicts the test set more accurately
than the sequence memoizer but less accurately than the
dictionary-free PAQ on the three datasets.

5.4. Debagging

It is easy to convert a sentence into a bag of words, but it
is much harder to convert a bag of words into a meaningful
sentence. We name the latter the debagging problem. We
perform an experiment where a character-level language
model evaluates every possible ordering of the words in
the bag, and returns and the ordering it deems best. To
make the experiment tractable, we only considered bags of
7 words, giving a search space of size 5040.

For our experiment, we used the MRNN and the memo-
izer5 to debag 500 bags of randomly chosen words from
“Ana Karenina”. We use 11 words for each bag, where the
first two and the last two words are used as context to aid
debagging the middle seven words.

We say that the model correctly debags a sentence if the
correct ordering is assigned the highest log probability. We
found that the wikipedia-trained MRNN recovered the cor-
rect ordering 34% of the time, and the wikipedia-trained
memoizer did so 27% of the time. Given that the problem
is “word-level”, utilizing large character contexts is essen-
tial to achieve good performance.

5We were unable to modify the implementation of PAQ to
make debagging feasible.
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6. Qualitative experiments
In this section we qualitatively investigate the nature of the
models learned by the MRNN.

6.1. Samples from the models

The simplest qualitative experiment is to inspect the sam-
ples generated by the three MRNNs. The most salient char-
acteristic of the samples is the richness of their vocabular-
ies. Further inspection reveals that the text is mostly gram-
matical, and that parentheses are usually balanced over
many characters. The artifacts of the generated text, such
as consecutive commas or quotes, are the result of the data
preprocessing and are frequently found in the training set.

6.1.1. SAMPLES FROM THE WIKIPEDIA MODEL

We now present a sample from the Wikipedia model. We
use ? to indicate the “unknown” character. The sample be-
low was obtained by running the MRNN less than 10 times
and selecting the most intriguing sample. The beginning
of the paragraph and the parentheses near the end are par-
ticularly interesting. The MRNN was initialized with the
phrase “The meaning of life is”:

The meaning of life is the tradition of the ancient human repro-
duction: it is less favorable to the good boy for when to remove
her bigger. In the show’s agreement unanimously resurfaced. The
wild pasteured with consistent street forests were incorporated
by the 15th century BE. In 1996 the primary rapford undergoes
an effort that the reserve conditioning, written into Jewish cities,
sleepers to incorporate the .St Eurasia that activates the popula-
tion. Mar??a Nationale, Kelli, Zedlat-Dukastoe, Florendon, Ptu’s
thought is. To adapt in most parts of North America, the dynamic
fairy Dan please believes, the free speech are much related to the

6.1.2. SAMPLES FROM THE NYT MODEL

Below is a sample from the model trained on the full NYT
dataset, where the MRNN was initialized with a single
space. The spaces surrounding the punctuation are an ar-
tifact of the preprocessing.

while he was giving attention to the second advantage of school
building a 2-for-2 stool killed by the Cultures saddled with a half-
suit defending the Bharatiya Fernall ’s office . Ms . Claire Parters
will also have a history temple for him to raise jobs until naked
Prodiena to paint baseball partners , provided people to ride both
of Manhattan in 1978 , but what was largely directed to China in
1946 , focusing on the trademark period is the sailboat yesterday
and comments on whom they obtain overheard within the 120th
anniversary , where many civil rights defined , officials said early
that forms , ” said Bernard J. Marco Jr. of Pennsylvania , was
monitoring New York

6.1.3. SAMPLES FORM THE ML MODEL

Finally, we generate text from an MRNN trained on the ML
corpus conditioned on the string “Recurrent”. This MRNN

is also able to balance parentheses (e.g., the third line of the
sample):

Recurrent network with the Stiefel information for logistic regres-
sion methods Along with either of the algorithms previously (two
or more skewprecision) is more similar to the model with the same
average mismatched graph. Though this task is to be studied un-
der the reward transform, such as (c) and (C) from the training
set, based on target activities for articles a ? 2(6) and (4.3). The
PHDPic (PDB) matrix of cav’va using the three relevant informa-
tion contains for tieming measurements. Moreover, because of
the therap tor, the aim is to improve the score to the best patch
randomly, but for each initially four data sets. As shown in Figure
11, it is more than 100 steps, we used ?? \to \infty with 1000

6.2. Structured sentence completion

In this section, we investigate the MRNN’s response in var-
ious situations by sampling from the MRNN’s distribution
conditioned on a prefix. The goal is to see whether the
MRNN is able to generate “plausible” continuations to the
initial strings. In our first experiment, we use the Wikipedia
MRNN to complete the string “England, Spain, France,
Germany,”:

England, Spain, France, Germany, and Massachusetts.
England, Spain, France, Germany, cars, and direct schools
England, Spain, France, Germany, , or New Orleans and Uganda.
England, Spain, France, Germany, , Westchester,

Jet State, Springfield, Athleaves and Sorvinhee

In the above completions, the MRNN correctly interpreted
the string to be a list of locations, so the generated text was
also a part of a list.

Next, we performed a similar experiment using the ML
model and the pair of strings “(ABC et al” and “ABC et
al”. The system has never seen the string “(ABC et al” in
its training set (simply because there is no machine learn-
ing author named ABC, and its capitalization is particularly
uncommon for a citation), so the MRNN needed to gener-
alize over an entirely new author name:

(ABC et al., 2003), ?13?, and for a supervised Mann-¡Whitnaguing
(ABC et al., 2002), based on Lebanon and Haussler, 1995b)
ABC et al. (2003b), or Penalization of Information
ABC et al. (2008) can be evaluated and motivated by

providing optimal estimate

This example shows that the MRNN is sensitive to the ini-
tial bracket before “ABC”, illustrating its representational
power. The above effect is extremely robust. In con-
trast, both N -gram models and the sequence memoizer
cannot make such predictions unless these exact strings
(e.g., “(ABC et al., 2003)”) occur in the training set, which
cannot be counted on. In fact, any method which is based
on precise context matches is fundamentally incapable of
utilizing long contexts, because the probability that a long
context occurs more than once is vanishingly small. We
experimentally verified that neither the sequence memoizer
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nor PAQ are not sensitive to the initial bracket.

7. Discussion
Modeling language at the character level seems unneces-
sarily difficult because we already know that morphemes
are the appropriate units for making semantic and syntactic
predictions. Converting large databases into sequences of
morphemes, however, is non-trivial compared with treating
them as character strings. Also, learning which character
strings make words is a relatively easy task compared with
discovering the subtleties of semantic and syntactic struc-
ture. So, given a powerful learning system like an MRNN,
the convenience of using characters may outweigh the ex-
tra work of having to learn the words All our experiments
show that an MRNN finds it very easy to learn words. With
the exception of proper names, the generated text contains
very few non-words. At the same time, the MRNN also as-
signs probability to (and occasionally generates) plausible
words that do not appear in the training set (e.g., “cryptoli-
ation”, “homosomalist”, or “un-ameliary”). This is a desir-
able property which enabled the MRNN to gracefully deal
with real words that it nonetheless didn’t see in the train-
ing set. Predicting the next word by making a sequence
of character predictions avoids having to use a huge soft-
max over all known words and this is so advantageous that
some word-level language models actually make up binary
“spellings” of words so that they can predict them one bit
at a time (Mnih & Hinton, 2009).

MRNNs already learn surprisingly good language models
using only 1500 hidden units, and unlike other approaches
such as the sequence memoizer and PAQ, they are easy to
extend along various dimensions. If we could train much
bigger MRNNs with millions of units and billions of con-
nections, it is possible that brute force alone would be suf-
ficient to achieve an even higher standard of performance.
But this will of course require considerably more computa-
tional power.
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