
CSC321: 2011

Introduction to Neural Networks

and Machine Learning

Lecture 6: Applying backpropagation to

shape recognition

Geoffrey Hinton

Applying backpropagation to shape

recognition

• People are very good at recognizing shapes

– It’s intrinsically difficult and computers are bad at it

• Some reasons why it is difficult:

– Segmentation: Real scenes are cluttered.

– Invariances: We are very good at ignoring all sorts

of variations that do not affect the shape.

– Deformations: Natural shape classes allow

variations (faces, letters, chairs).

– A huge amount of computation is required.

The invariance problem

• Our perceptual systems are very good at dealing
with invariances

– translation, rotation, scaling

– deformation, contrast, lighting, rate

• We are so good at this that its hard to appreciate
how difficult it is.

– Its one of the main difficulties in making
computers perceive.

– We still don’t have generally accepted
solutions.

The invariant feature approach

• Extract a large, redundant set of features that are
invariant under transformations

– e.g. “pair of parallel lines with a dot between them.

• With enough of these features, there is only one way to
assemble them into an object.

– we don’t need to represent the relationships between
features directly because they are captured by other
features.

• We must avoid forming features from parts of different
objects!

The normalization approach

• Do preprocessing to normalize the data

– e. g. put a box around an object and represent

the locations of its pieces relative to this box.

– Eliminates as many degrees of freedom as the

box has.

• translation, rotation, scale, shear, elongation

– But its not always easy to choose the box

b d

The replicated feature approach

• Use many different copies of the

same feature detector.

– The copies all have slightly

different positions.

– Could also replicate across scale

and orientation.

• Tricky and expensive

– Replication reduces the number

of free parameters to be learned.

• Use several different feature types,

each with its own replicated pool of

detectors.

– Allows each patch of image to be

represented in several ways.

The red connections all

have the same weight.

Equivariance

• Without the sub-sampling, convolutional neural nets give

“equivariance” for discrete translations.

• A small amount of translational invariance can be achieved

at each layer by using local averaging or maxing.

– This is called “sub-sampling”.

representation

image

translated

representation

translated

image

Backpropagation with weight constraints

• It is easy to modify the

backpropagation algorithm

to incorporate linear

constraints between the

weights.

• We compute the gradients

as usual, and then modify

the gradients so that they

satisfy the constraints.

– So if the weights started

off satisfying the

constraints, they will

continue to satisfy them.

21
21

21

21

21

:

:

:

wandwfor
w

E

w

E
use

w

E
and

w

E
compute

wwneedwe

wwconstrainTo

Combining the outputs of replicated features

• Get a small amount of translational
invariance at each level by averaging four
neighboring replicated detectors to give a
single output to the next level.

– This reduces the number of inputs to the
next layer of feature extraction, thus
allowing us to have many more different
feature pools.

– Taking the maximum of the four works
slightly better.

Combining the outputs of replicated features

• If you don’t understand anything about coarse coding,
achieving invariance in multiple stages by alternating
between a layer of feature extraction and a layer of sub-
sampling seems to fit what we know about the monkey
visual system.

– The larger receptive fields of higher-level features
suggest that they do not care about position.

– But this naïve view cannot explain how we preserve
the precise spatial relationship between fairly high-
level features like a nose and a mouth.

Equivariance vs Invariance

• Sub-sampling tries to make the neural activities

invariant for small changes in viewpoint.

– This is probably the wrong goal.

– It is motivated by the fact that the final label

needs to be viewpoint-invariant.

• Its probably better to aim for equivariance:

– Changes in viewpoint lead to corresponding

changes in neural activities.

Equivariance vs Invariance

• In the perceptual system, its the weights that

code viewpoint-invariant knowledge, not the

neural activities.

– Convolutional nets (without sub-sampling)

achieve this by copying the weights to every

location.

– We need a better way of achieving the same

thing that is more neurally plausible and

works efficiently for more than just position

invariance.

• Dilation, rotation, elongation, shear, lighting etc.

Le Net

• Yann LeCun and others developed a really good
recognizer for handwritten digits by using
backpropagation in a feedforward net with:

– Many hidden layers

– Many pools of replicated units in each layer.

– Averaging of the outputs of nearby replicated units.

– A wide net that can cope with several characters at
once even if they overlap.

• Look at all of the demos of LENET at
http://yann.lecun.com

– These demos are required “reading” for the tests.

The architecture of LeNet5

The 82 errors made by LeNet5

Notice that

most of the

errors are

cases that

people find

quite easy.

The human

error rate is

probably 20

to 30 errors

A brute force approach

• LeNet uses knowledge about the invariances to design:

– the network architecture

– or the weight constraints

– or the types of feature

• But its much simpler to incorporate knowledge of
invariances by just creating extra training data:

– for each training image, produce new training data by
applying all of the transformations we want to be
insensitive to (Le Net can benefit from this too)

– Then train a large, dumb net on a fast computer.

– This works surprisingly well if the transformations are
not too big (so do approximate normalization first).

Making dumb backpropagation work really

well for recognizing digits (Ciresan et. al. 2010)

• Using the standard viewing transformations plus local

deformation fields to get LOTS of data.

• Use a large number of hidden layers with a large number

of units per layer and no weight constraints.

• Use the appropriate error measure for multi-class

categorization:

– Softmax outputs with cross-entropy error.

• Train the hell out of it by using a big GPU board for a

long time (at 5x10^9 weight updates per second)

– This gets down to only 35 errors which is the record

and is close to human performance.

The errors made by the big dumb net trained

with lots of fancy transformations of the data

The top printed digit is the right answer. The bottom two

printed digits are the network’s best two guesses.

Priors and Prejudice

• We can put our prior knowledge about the task into the

network by using weight-sharing, or carefully designing

the connectivity, or carefully choosing the right types of

unit.

– But this prejudices the network in favor of a particular

way of solving the problem.

• Alternatively, we can use our prior knowledge to create a

whole lot more training data.

– This may require a lot of work and it is much less

efficient in terms of the time required for learning.

– But it does not prejudice the network in favor of a

particular way of getting the right answer.

