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Applying backpropagation to shape 

recognition

• People are very good at recognizing shapes

– It’s intrinsically difficult and computers are bad at it

• Some reasons why it is difficult:

– Segmentation: Real scenes are cluttered.

– Invariances: We are very good at ignoring all sorts 

of variations that do not affect the shape.

– Deformations: Natural shape classes allow 

variations (faces, letters, chairs).

– A huge amount of computation is required.



The invariance problem

• Our perceptual systems are very good at dealing 
with invariances

– translation, rotation, scaling

– deformation, contrast, lighting, rate

• We are so good at this that its hard to appreciate 
how difficult it is.

– Its one of the main difficulties in making 
computers perceive.

– We still don’t have generally accepted 
solutions.



The invariant feature approach

• Extract a large, redundant set of features that are 
invariant under transformations

– e.g.  “pair of parallel lines with a dot between them.

• With enough of these features, there is only one way to 
assemble them into an object.

– we don’t need to represent the relationships between 
features directly because they are captured by other 
features.

• We must avoid forming features from parts of different 
objects!



The normalization approach

• Do preprocessing to normalize the data 

– e. g. put a box around an object and represent 

the locations of its pieces relative to this box. 

– Eliminates as many degrees of freedom as the 

box has.

• translation, rotation, scale, shear, elongation

– But its not always easy to choose the box
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The replicated feature approach

• Use many different copies of the 

same feature detector. 

– The copies all have slightly 

different positions.

– Could also replicate across scale 

and orientation. 

• Tricky and expensive

– Replication reduces the number 

of free parameters to be learned.

• Use several different feature types, 

each with its own replicated pool of 

detectors.

– Allows each patch of image to be 

represented in several ways.

The red connections all 

have the same weight.



Equivariance

• Without the sub-sampling, convolutional neural nets give 

“equivariance” for discrete translations.

• A small amount of translational invariance can be achieved 

at each layer by using local averaging or maxing.

– This is called “sub-sampling”.

representation

image

translated 

representation

translated      

image



Backpropagation with weight constraints

• It is easy to modify the 

backpropagation algorithm 

to incorporate linear 

constraints between the 

weights.

• We compute the gradients 

as usual, and then modify 

the gradients so that they 

satisfy the constraints.

– So if the weights started 

off satisfying the 

constraints, they will 

continue to satisfy them.
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Combining the outputs of replicated features

• Get a small amount of translational 
invariance at each level by averaging four 
neighboring replicated detectors to give a 
single output to the next level.

– This reduces the number of inputs to the 
next layer of feature extraction, thus 
allowing us to have many more different 
feature pools.

– Taking the maximum of the four works 
slightly better.



Combining the outputs of replicated features

• If you don’t understand anything about coarse coding, 
achieving invariance in multiple stages by alternating 
between a layer of feature extraction and a layer of sub-
sampling seems to fit what we know about the monkey 
visual system.

– The larger receptive fields of higher-level features 
suggest that they do not care about position.

– But this naïve view cannot explain how we preserve 
the precise spatial relationship between fairly high-
level features like a nose and a mouth. 



Equivariance vs Invariance

• Sub-sampling tries to make the neural activities 

invariant for small changes in viewpoint.

– This is probably the wrong goal.

– It is motivated by the fact that the final label 

needs to be viewpoint-invariant.

• Its probably better to aim for equivariance:

– Changes in viewpoint lead to corresponding 

changes in neural activities. 



Equivariance vs Invariance

• In the perceptual system, its the weights that 

code viewpoint-invariant knowledge, not the 

neural activities.

– Convolutional nets (without sub-sampling) 

achieve this by copying the weights to every 

location.

– We need a better way of achieving the same 

thing that is more neurally plausible and 

works efficiently for more than just position 

invariance.

• Dilation, rotation, elongation, shear, lighting etc.



Le Net

• Yann LeCun and others developed a really good 
recognizer for handwritten digits by using 
backpropagation in a feedforward net with:

– Many hidden layers

– Many pools of replicated units in each layer.

– Averaging of the outputs of nearby replicated units.

– A wide net that can cope with several characters at 
once even if they overlap.

• Look at all of the demos of LENET at 
http://yann.lecun.com

– These demos are required “reading” for the tests. 



The architecture of LeNet5























The 82 errors made by LeNet5

Notice that 

most of the 

errors are 

cases that 

people find 

quite easy.

The human 

error rate is 

probably 20 

to 30 errors



A brute force approach

• LeNet uses knowledge about the invariances to design:

– the network architecture 

– or the weight constraints 

– or the types of feature

• But its much simpler to incorporate knowledge of 
invariances by just creating extra training data:

– for each training image, produce new training data by 
applying all of the transformations we want to be 
insensitive to (Le Net can benefit from this too)

– Then train a large, dumb net on a fast computer.

– This works surprisingly well if the transformations are 
not too big (so do approximate normalization first).



Making dumb backpropagation work really 

well for recognizing digits (Ciresan et. al. 2010)

• Using the standard viewing transformations plus local 

deformation fields to get LOTS of data.

• Use a large number of hidden layers with a large number 

of units per layer and no weight constraints.

• Use the appropriate error measure for multi-class 

categorization:

– Softmax outputs with cross-entropy error.

• Train the hell out of it by using a big GPU board for a 

long time (at 5x10^9 weight updates per second)

– This gets down to only 35 errors which is the record 

and is close to human performance.



The errors made by the big dumb net trained 

with lots of fancy transformations of the data

The top printed digit is the right answer. The bottom two 

printed digits are the network’s best two guesses.



Priors and Prejudice

• We can put our prior knowledge about the task into the 

network by using weight-sharing, or carefully designing 

the connectivity, or carefully choosing the right types of 

unit.

– But this prejudices the network in favor of a particular 

way of solving the problem.

• Alternatively, we can use our prior knowledge to create a 

whole lot more training data.

– This may require a lot of work and it is much less 

efficient in terms of the time required for learning.

– But it does not prejudice the network in favor of a 

particular way of getting the right answer.


