
CSC321

Introduction to Neural Networks

and Machine Learning

Lecture 4: Learning to model relationships

and word sequences

Geoffrey Hinton

Learning by back-propagating error derivatives

input vector

hidden

layers

outputs

Back-propagate

error signal to

get derivatives

for learning

Compare outputs with

correct answer to get

error signal

Some Success Stories

• Back-propagation has been used for a large
number of practical applications.

– Recognizing hand-written characters

– Predicting the future price of stocks

– Detecting credit card fraud

– Recognize speech (wreck a nice beach)

– Predicting the next word in a sentence from
the previous words

• This is essential for good speech recognition.

– Understanding the effects of brain damage

An example of relational information

Christopher = Penelope Andrew = Christine

Margaret = Arthur Victoria = James Jennifer = Charles

Colin Charlotte

Roberto = Maria Pierro = Francesca

Gina = Emilio Lucia = Marco Angela = Tomaso

Alfonso Sophia

Another way to express the same information

• Make a set of propositions using the 12 relationships:

– son, daughter, nephew, niece

– father, mother, uncle, aunt

– brother, sister, husband, wife

• (colin has-father james)

• (colin has-mother victoria)

• (james has-wife victoria) this follows from the two above

• (charlotte has-brother colin)

• (victoria has-brother arthur)

• (charlotte has-uncle arthur) this follows from the above

A relational learning task

• Given a large set of triples that come from some

family trees, figure out the regularities.

– The obvious way to express the regularities is as

symbolic rules
(x has-mother y) & (y has-husband z) => (x has-father z)

• Finding the symbolic rules involves a difficult

search through a very large discrete space of

possibilities.

• Can a neural network capture the same knowledge

by searching through a continuous space of

weights?

The structure of the neural net

Local encoding

of person 2

Local encoding

of person 1

Local encoding

of relationship

Learned distributed

encoding of person 1
Learned distributed

encoding of relationship

Learned distributed

encoding of person 2

Units that learn to predict features of the output from features of the inputs

output

inputs

How to show the weights of hidden units

• The obvious method is to
show numerical weights
on the connections:

– Try showing 25,000
weights this way!

• Its better to show the
weights as black or white
blobs in the locations of
the neurons that they
come from

– Better use of pixels

– Easier to see patterns

+3.2 -1.5

+0.8

input

hidden 1 2

hidden 1 hidden 2

The features it learned for person 1

Christopher = Penelope Andrew = Christine

Margaret = Arthur Victoria = James Jennifer = Charles

Colin Charlotte

What the network learns

• The six hidden units in the bottleneck connected to the
input representation of person 1 learn to represent
features of people that are useful for predicting the
answer.

– Nationality, generation, branch of the family tree.

• These features are only useful if the other bottlenecks
use similar representations and the central layer learns
how features predict other features. For example:

Input person is of generation 3 and

relationship requires answer to be one generation up

implies

Output person is of generation 2

Another way to see that it works

• Train the network on all but 4 of the triples that

can be made using the 12 relationships

– It needs to sweep through the training set

many times adjusting the weights slightly

each time.

• Then test it on the 4 held-out cases.

– It gets about 3/4 correct. This is good for a 24-

way choice.

Why this is interesting

• There has been a big debate in cognitive science between
two rival theories of what it means to know a concept:

The feature theory: A concept is a set of semantic features.

– This is good for explaining similarities between concepts

– Its convenient: a concept is a vector of feature activities.

The structuralist theory: The meaning of a concept lies in its
relationships to other concepts.

– So conceptual knowledge is best expressed as a
relational graph.

• These theories need not be rivals. A neural net can use
semantic features to implement the relational graph.

– This means that no explicit inference is required to arrive
at the intuitively obvious consequences of the facts that
have been explicitly learned. The net “intuits” the answer!

A subtelty

• The obvious way to implement a relational graph

in a neural net is to treat a neuron as a node in

the graph and a connection as a binary

relationship. But this will not work:

– We need many different types of relationship

• Connections in a neural net do not have labels.

– We need ternary relationships as well as

binary ones. e.g. (A is between B and C)

– Its just naïve to think neurons are concepts.

Problems with squared error

• The squared error measure has some drawbacks

– If the desired output is 1 and the actual output is

0.00000001 there is almost no gradient for a logistic unit

to fix up the error.

– If we are trying to assign probabilities to class labels, we

know that the outputs should sum to 1, but we are

depriving the network of this knowledge.

• Is there a different cost function that is more appropriate and

works better?

– Force the outputs to represent a probability distribution

across discrete alternatives.

Softmax

ii

j i

j

ji

j

j

j

ii
i

i

j

x

x

i

dy
x

y

y

C

x

C

ydC

yy
x

y

e

e
y

j

i






























log

)(1

The output units use a non-

local non-linearity:

The cost function is the negative

log prob of the right answer

The steepness of C exactly

balances the flatness of the

output non-linearity

output

units

x

y

x

y

x

y
1

1 2

2 3

3

desired value

A basic problem in speech recognition

• We cannot identify phonemes perfectly in noisy speech

– The acoustic input is often ambiguous: there are
several different words that fit the acoustic signal
equally well.

• People use their understanding of the meaning of the
utterance to hear the right word.

– We do this unconsciously

– We are very good at it

• This means speech recognizers have to know which
words are likely to come next and which are not.

– Can this be done without full understanding?

• Take a huge amount of text and count the frequencies of all
triples of words. Then use these frequencies to make bets
on the next word in a b ?

• Until very recently this was state-of-the-art.

– We cannot use a bigger context because there are too
many quadgrams

– We have to “back-off” to digrams when the count for a
trigram is zero.

• The probability is not zero just because we didn’t see one.

The standard “trigram” method

)(

)(

),|(

),|(

123

123

abdcount

abccount

awbwdwp

awbwcwp






Why the trigram model is silly

• Suppose we have seen the sentence

“the cat got squashed in the garden on friday”

• This should help us predict words in the sentence

“the dog got flattened in the yard on monday”

• A trigram model does not understand the similarities

between

– cat/dog squashed/flattened garden/yard friday/monday

• To overcome this limitation, we need to use the features of

previous words to predict the features of the next word.

– Using a feature representation and a learned model of

how past features predict future ones, we can use many

more words from the past history.

Bengio’s neural net for predicting the next word

Softmax units (one per possible word)

Index of word at t-2 Index of word at t-1

Learned distributed

encoding of word t-2
Learned distributed

encoding of word t-1

Units that learn to predict the output word from features of the input words

output

inputs

Table look-up Table look-up

Skip-layer

connections

An alternative architecture

Index of

word at t-2

Learned distributed

encoding of word t-2

Units that discover good or bad combinations of features

Index of

word at t-1

Learned distributed

encoding of word t-1

Index of

candidate

Learned distributed

encoding of candidate

Try all candidate

words one at a time

A single output unit that gives

a score for the candidate

word in this context

Use the scores from all candidate

words in a softmax to get error

derivatives that try to raise the score

of the correct candidate and lower the

score of its high-scoring rivals.

The Collobert and Weston net

• Learn to judge if a word fits the 5 word context

on either side of it. Train on ~600 million words.

word

at t-2

word

code

word

at t-1

word

code

word at t or

random word

word

code

word

at t+1

word

code

word

at t+2

word

code

Units that learn to predict the output from features of the input words

right or

wrong?

