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Some Success Stories

• Back-propagation has been used for a large 
number of practical applications.

– Recognizing hand-written characters

– Predicting the future price of stocks

– Detecting credit card fraud

– Recognize speech (wreck a nice beach)

– Predicting the next word in a sentence from 
the previous words

• This is essential for good speech recognition.

– Understanding the effects of brain damage



An example of relational information

Christopher = Penelope           Andrew = Christine

Margaret = Arthur      Victoria = James       Jennifer = Charles

Colin                  Charlotte

Roberto = Maria                     Pierro = Francesca

Gina = Emilio           Lucia = Marco         Angela = Tomaso

Alfonso                Sophia



Another way to express the same information

• Make a set of propositions using the 12 relationships:

– son, daughter, nephew, niece

– father, mother, uncle, aunt

– brother, sister, husband, wife

• (colin has-father james)

• (colin has-mother victoria)

• (james has-wife victoria)  this follows from the two above

• (charlotte has-brother colin)

• (victoria has-brother arthur)

• (charlotte has-uncle arthur) this follows from the above



A relational learning task

• Given a large set of triples that come from some 

family trees, figure out the regularities.

– The obvious way to express the regularities is as 

symbolic rules
(x has-mother y) & (y has-husband z) => (x has-father z)

• Finding the symbolic rules involves a difficult 

search through a very large discrete space of 

possibilities. 

• Can a neural network capture the same knowledge 

by searching through a continuous space of 

weights?



The structure of the neural net
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How to show the weights of hidden units

• The obvious method is to 
show numerical weights 
on the connections:

– Try showing 25,000 
weights this way!

• Its better to show the 
weights as black or white 
blobs in the locations of 
the neurons that they 
come from

– Better use of pixels

– Easier to see patterns
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The features it learned for person 1

Christopher = Penelope           Andrew = Christine

Margaret = Arthur      Victoria = James       Jennifer = Charles

Colin                  Charlotte



What the network learns

• The six hidden units in the bottleneck connected to the 
input representation of person 1 learn to represent 
features of people that are useful for predicting the 
answer.

– Nationality, generation, branch of the family tree.

• These features are only useful if the other bottlenecks 
use similar representations and the central layer learns 
how features predict other features. For example:

Input person is of generation 3  and

relationship requires answer to be one generation up

implies

Output person is of generation 2



Another way to see that it works

• Train the network on all but 4 of the triples that 

can be made using the 12 relationships

– It needs to sweep through the training set 

many times adjusting the weights slightly 

each time.

• Then test it on the 4 held-out cases.

– It gets about 3/4 correct. This is good for a 24-

way choice.



Why this is interesting

• There has been a big debate in cognitive science between 
two rival theories of what it means to know a concept:

The feature theory: A concept is a set of semantic features.

– This is good for explaining similarities between concepts

– Its convenient: a concept is a vector of feature activities.

The structuralist theory: The meaning of a concept lies in its 
relationships to other concepts.

– So conceptual knowledge is best expressed as a 
relational graph.

• These theories need not be rivals. A neural net can use 
semantic features to implement the relational graph.

– This means that no explicit inference is required to arrive 
at the intuitively obvious consequences of the facts that 
have been explicitly learned. The net “intuits” the answer!



A subtelty

• The obvious way to implement a relational graph 

in a neural net is to treat a neuron as a node in 

the graph and a connection as a binary 

relationship. But this will not work:

– We need many different types of relationship

• Connections in a neural net do not have labels.

– We need ternary relationships as well as 

binary ones. e.g. (A is between B and C)

– Its just naïve to think neurons are concepts.



Problems with squared error

• The squared error measure has some drawbacks

– If the desired output is 1 and the actual output is 

0.00000001 there is almost no gradient for a logistic unit 

to fix up the error.

– If we are trying to assign probabilities to class labels, we 

know that the outputs should sum to 1, but we are 

depriving the network of this knowledge.

• Is there a different cost function that is more appropriate and 

works better?

– Force the outputs to represent a probability distribution 

across discrete alternatives.



Softmax
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A basic problem in speech recognition

• We cannot identify phonemes perfectly in noisy speech

– The acoustic input is often ambiguous: there are 
several different words that fit the acoustic signal 
equally well.

• People use their understanding of the meaning of the 
utterance to hear the right word.

– We do this unconsciously

– We are very good at it

• This means speech recognizers have to know which 
words are likely to come next and which are not.

– Can this be done without full understanding?



• Take a huge amount of text and count the frequencies of all 
triples of words. Then use these frequencies to make bets 
on the next word in a b ?

• Until very recently this was state-of-the-art.

– We cannot use a bigger context because there are too 
many quadgrams

– We have to “back-off” to digrams when the count for a 
trigram is zero.

• The probability is not zero just because we didn’t see one. 

The standard “trigram” method
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Why the trigram model is silly

• Suppose we have seen the sentence

“the cat got squashed in the garden on friday”

• This should help us predict words in the sentence

“the dog got flattened in the yard on monday”

• A trigram model does not understand the similarities 

between

– cat/dog   squashed/flattened   garden/yard   friday/monday

• To overcome this limitation, we need to use the features of 

previous words to predict the features of the next word.

– Using a feature representation and a learned model of 

how past features predict future ones, we can use many 

more words from the past history.



Bengio’s neural net for predicting the next word
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An alternative architecture
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The Collobert and Weston net

• Learn to judge if a word fits the 5 word context 

on either side of it. Train on ~600 million words.
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