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The story so far

• If we use a large set of non-adaptive features, we can 
often make the two classes linearly separable.

– But if we just fit any old separating plane, it will not 
generalize well to new cases.

• If we fit the separating plane that maximizes the margin 
(the minimum distance to any of the data points), we will 
get much better generalization.

– Intuitively, we are squeezing out all the surplus 
capacity that came from using a high-dimensional 
feature space.

• This can be justified by a whole lot of clever mathematics 
which shows that

– large margin separators have lower VC dimension.

– models with lower VC dimension have a smaller gap 
between the training and test error rates. 



Why do large margin separators have lower VC 

dimension?

• Consider a set of N points that all fit 
inside a unit hypercube.

• If the number of dimensions is bigger 
than N-2, it is easy to find a separating 
plane for any labeling of the points.

– So the fact that there is a separating 
plane doesn’t tell us much. It like 
putting a straight line through 2 data 
points.

• But there is unlikely to be a separating 
plane with a margin that is big

– If we find such a plane its unlikely to 
be a coincidence. So it will probably 
apply to the test data too.



How to make a plane curved

• Fitting hyperplanes as 
separators is mathematically 
easy.

– The mathematics is linear.

• By replacing the raw input 
variables with a much larger 
set of features we get a nice 
property:

– A planar separator in the 
high-dimensional space of 
feature vectors is a curved 
separator in the low 
dimensional space of the 
raw input variables. 

A planar separator in 

a 20-D feature space 

projected back to the 

original 2-D space



A potential problem and a magic solution

• If we map the input vectors into a very high-dimensional 
feature space, surely the task of finding the maximum-
margin separator becomes computationally intractable?

– The mathematics is all linear, which is good, but the 
vectors have a huge number of components.

– So taking the scalar product of two vectors is very 
expensive. 

• The way to keep things tractable is to use                   

“the kernel trick”

• The kernel trick makes your brain hurt when you first 
learn about it, but its actually very simple.



What the kernel trick achieves

• All of the computations that we need to do to find 
the maximum-margin separator can be expressed 
in terms of scalar products between pairs of 
datapoints (in the high-dimensional feature space).

• These scalar products are the only part of the 
computation that depends on the dimensionality of 
the high-dimensional space.

– So if we had a fast way to do the scalar products 
we would’nt have to pay a price for solving the 
learning problem in the high-D space.

• The kernel trick is just a magic way of doing scalar 
products a whole lot faster than is possible.



The kernel trick

• For many mappings from 

a low-D space to a high-D 

space, there is a simple 

operation on two vectors 

in the low-D space that 

can be used to compute 

the scalar product of their 

two images in the high-D 

space.
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Dealing with the test data

• If we choose a mapping to a high-D space for 

which the kernel trick works, we do not have to 

pay a computational price for the high-

dimensionality when we find the best hyper-plane.

– We cannot express the hyperplane by using its normal 

vector in the high-dimensional space because this 

vector would have a huge number of components.

– Luckily, we can express it in terms of the support 

vectors.

• But what about the test data. We cannot compute 

the scalar product                because its in the 

high-D space.
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Dealing with the test data

• We need to decide which side of the separating 

hyperplane a test point lies on and this requires 

us to compute a scalar product.

• We can express this scalar product as a 

weighted average of scalar products with the 

stored support vectors

– This could still be slow if there are a lot of 

support vectors .



The classification rule

• The final classification rule is quite simple:

• All the cleverness goes into selecting the support vectors 

that maximize the margin and computing the weight to 

use on each support vector.

• We also need to choose a good kernel function and we 

may need  to choose a lambda for dealing with non-

separable cases.
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Some commonly used kernels
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Polynomial:

Gaussian 

radial basis 

function

Neural net:

For the neural network kernel, there is one “hidden unit” 

per support vector, so the process of fitting the maximum 

margin hyperplane decides how many hidden units to use. 

Also, it may violate Mercer’s condition.

Parameters 

that the user 

must choose



Performance

• Support Vector Machines work very well in practice. 

– The user must choose the kernel function and its 
parameters, but the rest is automatic.

– The test performance is very good.

• They can be expensive in time and space for big datasets

– The computation of the maximum-margin hyper-plane 
depends on the square of the number of training cases.

– We need to store all the support vectors.

• SVM’s are very good if you have no idea about what 
structure to impose on the task.

• The kernel trick can also be used to do PCA in a much 
higher-dimensional space, thus giving a non-linear version 
of PCA in the original space (PCA will be explained later)


