
CSC321: Introduction to Neural Networks

and Machine Learning

Lecture 24: Non-linear Support Vector

Machines

Geoffrey Hinton

The story so far

• If we use a large set of non-adaptive features, we can
often make the two classes linearly separable.

– But if we just fit any old separating plane, it will not
generalize well to new cases.

• If we fit the separating plane that maximizes the margin
(the minimum distance to any of the data points), we will
get much better generalization.

– Intuitively, we are squeezing out all the surplus
capacity that came from using a high-dimensional
feature space.

• This can be justified by a whole lot of clever mathematics
which shows that

– large margin separators have lower VC dimension.

– models with lower VC dimension have a smaller gap
between the training and test error rates.

Why do large margin separators have lower VC

dimension?

• Consider a set of N points that all fit
inside a unit hypercube.

• If the number of dimensions is bigger
than N-2, it is easy to find a separating
plane for any labeling of the points.

– So the fact that there is a separating
plane doesn’t tell us much. It like
putting a straight line through 2 data
points.

• But there is unlikely to be a separating
plane with a margin that is big

– If we find such a plane its unlikely to
be a coincidence. So it will probably
apply to the test data too.

How to make a plane curved

• Fitting hyperplanes as
separators is mathematically
easy.

– The mathematics is linear.

• By replacing the raw input
variables with a much larger
set of features we get a nice
property:

– A planar separator in the
high-dimensional space of
feature vectors is a curved
separator in the low
dimensional space of the
raw input variables.

A planar separator in

a 20-D feature space

projected back to the

original 2-D space

A potential problem and a magic solution

• If we map the input vectors into a very high-dimensional
feature space, surely the task of finding the maximum-
margin separator becomes computationally intractable?

– The mathematics is all linear, which is good, but the
vectors have a huge number of components.

– So taking the scalar product of two vectors is very
expensive.

• The way to keep things tractable is to use

“the kernel trick”

• The kernel trick makes your brain hurt when you first
learn about it, but its actually very simple.

What the kernel trick achieves

• All of the computations that we need to do to find
the maximum-margin separator can be expressed
in terms of scalar products between pairs of
datapoints (in the high-dimensional feature space).

• These scalar products are the only part of the
computation that depends on the dimensionality of
the high-dimensional space.

– So if we had a fast way to do the scalar products
we would’nt have to pay a price for solving the
learning problem in the high-D space.

• The kernel trick is just a magic way of doing scalar
products a whole lot faster than is possible.

The kernel trick

• For many mappings from

a low-D space to a high-D

space, there is a simple

operation on two vectors

in the low-D space that

can be used to compute

the scalar product of their

two images in the high-D

space.

)(.)(),(baba xxxxK 



Low-D

High-D

doing the scalar

product in the

obvious way

Letting the

kernel do

the work

ax

)(ax
)(bx

bx

Dealing with the test data

• If we choose a mapping to a high-D space for

which the kernel trick works, we do not have to

pay a computational price for the high-

dimensionality when we find the best hyper-plane.

– We cannot express the hyperplane by using its normal

vector in the high-dimensional space because this

vector would have a huge number of components.

– Luckily, we can express it in terms of the support

vectors.

• But what about the test data. We cannot compute

the scalar product because its in the

high-D space.

)(. xw 

Dealing with the test data

• We need to decide which side of the separating

hyperplane a test point lies on and this requires

us to compute a scalar product.

• We can express this scalar product as a

weighted average of scalar products with the

stored support vectors

– This could still be slow if there are a lot of

support vectors .

The classification rule

• The final classification rule is quite simple:

• All the cleverness goes into selecting the support vectors

that maximize the margin and computing the weight to

use on each support vector.

• We also need to choose a good kernel function and we

may need to choose a lambda for dealing with non-

separable cases.

 
SVs

stest
s xxKwbias



0),(

The set of

support vectors

Some commonly used kernels

)(tanh),(

),(

)1.(),(

22 2/||||













x.yyx

yx

yxyx

yx

kK

eK

K p
Polynomial:

Gaussian

radial basis

function

Neural net:

For the neural network kernel, there is one “hidden unit”

per support vector, so the process of fitting the maximum

margin hyperplane decides how many hidden units to use.

Also, it may violate Mercer’s condition.

Parameters

that the user

must choose

Performance

• Support Vector Machines work very well in practice.

– The user must choose the kernel function and its
parameters, but the rest is automatic.

– The test performance is very good.

• They can be expensive in time and space for big datasets

– The computation of the maximum-margin hyper-plane
depends on the square of the number of training cases.

– We need to store all the support vectors.

• SVM’s are very good if you have no idea about what
structure to impose on the task.

• The kernel trick can also be used to do PCA in a much
higher-dimensional space, thus giving a non-linear version
of PCA in the original space (PCA will be explained later)

