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Getting good generalization on big datasets

• If we have a big data set that needs a 

complicated model, the full Bayesian framework 

is very computationally expensive.

• Is there a frequentist method that is faster but 

still generalizes well?



Preprocessing the input vectors

• Instead of trying to predict the answer directly from the 
raw inputs we could start by extracting  a layer of 
“features”.

– Sensible if we already know that certain combinations 
of input values would be useful (e.g. edges or corners 
in an image).

• Instead of learning the features we could design them by 
hand. 

– The hand-coded features are equivalent to a layer of 
non-linear neurons that do not need to be learned.

– If we use a very big set of features for a two-class 
problem, the classes will almost certainly be linearly 
separable.

• But surely the linear separator will give poor generalization.



Is preprocessing cheating?

• Its cheating if we use a carefully designed set of task-
specific, hand-coded features and then claim that the 
learning algorithm solved the whole problem. 

– The really hard bit is done by designing the features.

• Its not cheating if we learn the non-linear preprocessing.

– This makes learning much more difficult and much more 
interesting (e.g. backpropagation)

• Its not cheating if we use a very big set of non-linear 
features that is task-independent. 

– Support Vector Machines do this.

– They have a clever way to prevent overfitting (lecture 23)

– They have a clever way to use a huge number of 
features without requiring nearly as much computation as 
seems to be necessary (lecture 24).



quadratic discrimination: f(z) = zTPz + qTz + r

xT
i Pxi + qTxi + r ≥ 1, yT

i Pyi + qTyi + r ≤ −1

can add additional constraints (e.g., P ¹ −I to separate by an ellipsoid)

polynomial discrimination: F (z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial

Geometric problems 8–14



A hierarchy of model classes

• Some model classes can be arranged in a 
hierarchy of increasing complexity.

• How do we pick the best level in the hierarchy 
for modeling a given dataset?



A way to choose a model class

• We want to get a low error rate on unseen data.

– This is called “structural risk minimization”

• It would be really helpful if we could get a guarantee of 
the following form: 

Test error rate =< train error rate + f(N, h, p)

Where N = size of training set,

h = measure of the model complexity,

p = the probability that this bound fails

We need p to allow for really unlucky test sets.

• Then we could choose the model complexity that 
minimizes the bound on the test error rate.



A weird measure of model complexity

• Suppose that we pick n datapoints and assign labels of + 

or – to them at random. If our model class (e.g. a neural 

net with a certain number of hidden units) is powerful 

enough to learn any association of labels with data, its 

too powerful!

• Maybe we can characterize the power of a model class 

by asking how many datapoints it can learn perfectly for 

all possible assignments of labels.

– This number of datapoints is called the Vapnik-

Chervonenkis dimension.

– Creationism has infinite VC dimension.



An example of VC dimension

• But we cannot deal with some of the possible labelings of four 
points. A 2-D hyperplane line does not shatter 4 points.

• Suppose our model class is a hyperplane.

• In 2-D, we can find a plane (i.e. a line) to deal with any 

labeling of three points. A 2-D hyperplane shatters 3 points



Some examples of VC dimension

• The VC dimension of a hyperplane in 2-D is 3.

– In k dimensions it is k+1.

• Its just a coincidence that the VC dimension of a 

hyperplane is almost identical to the number of 

parameters it takes to define a hyperplane. 

• A sine wave has infinite VC dimension and only 2 

parameters! By choosing the phase and period carefully 

we can shatter any random collection of one-dimensional 

datapoints (except for nasty special cases).
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The probabilistic guarantee

where N = size of training set

h = VC dimension of the model class

p = upper bound on probability that this bound fails

So if we train models with different complexity, we 
should pick the one that minimizes this bound 

Actually, this is only sensible if we think the bound is 
fairly tight, which it usually isn’t. The theory provides 
insight, but in practice we still need some witchcraft.
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Preventing overfitting when using big sets of features

• Suppose we use a big set of features 
to ensure that the two classes are 
linearly separable. What is the best 
separating line to use?

• The Bayesian answer is to use them 
all (including ones that do not quite 
separate the data.)

• Weight each line by its posterior 
probability (i.e. by a combination of 
how well it fits the data and how well it 
fits the prior).

• Is there an efficient way to 
approximate the correct Bayesian 
answer?



Support Vector Machines

• The line that maximizes the minimum 

margin is a good bet.

– The model class of “hyper-planes 

with a margin of m” has a low VC 

dimension if m is big.

• This maximum-margin separator is 

determined by a subset of the 

datapoints.

– Datapoints in this subset  are 

called “support vectors”.

– It will be useful computationally if 

only a small fraction of the 

datapoints are support vectors.

The support vectors 

are indicated by the 

circles around them.



Training a linear SVM

• To find the maximum margin separator, we have to solve 

the following optimization problem:

• This is tricky but it’s a convex problem. There is only one 

optimum and we can find it without fiddling with learning 

rates or weight decay or early stopping.

– Don’t worry about the optimization problem. It has been 

solved. Its called quadratic programming.

– It takes time proportional to N^2 which is really bad for 

very big datasets.
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Testing a linear SVM

• The separator is defined as the set of points for 

which:
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A Bayesian Interpretation

• Using the maximum margin separator often 

gives a pretty good approximation to using all 

separators weighted by their posterior 

probabilities.



What to do if there is no separating plane

• Use a much bigger set of features.

– This looks as if it would make the computation 

hopelessly slow, but in the next lecture we will 

see how to use the “kernel” trick to make the 

computation fast even with huge numbers of 

features.

• Extend the definition of maximum margin to 

allow non-separating planes.

– This can be done by using “slack” variables



Introducing slack variables

• Slack variables are constrained to be non-negative. 

When they are greater than zero they allow us to cheat 

by putting the plane closer to the datapoint than the 

margin. So we need to minimize the amount of cheating. 

This means we have to pick a value for lamba (this 

sounds familiar!)
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A picture of the best plane with a slack variable


