
CSC321: Introduction to Neural Networks and

Machine Learning

Lecture 23:

Linear Support Vector Machines

Geoffrey Hinton

Getting good generalization on big datasets

• If we have a big data set that needs a

complicated model, the full Bayesian framework

is very computationally expensive.

• Is there a frequentist method that is faster but

still generalizes well?

Preprocessing the input vectors

• Instead of trying to predict the answer directly from the
raw inputs we could start by extracting a layer of
“features”.

– Sensible if we already know that certain combinations
of input values would be useful (e.g. edges or corners
in an image).

• Instead of learning the features we could design them by
hand.

– The hand-coded features are equivalent to a layer of
non-linear neurons that do not need to be learned.

– If we use a very big set of features for a two-class
problem, the classes will almost certainly be linearly
separable.

• But surely the linear separator will give poor generalization.

Is preprocessing cheating?

• Its cheating if we use a carefully designed set of task-
specific, hand-coded features and then claim that the
learning algorithm solved the whole problem.

– The really hard bit is done by designing the features.

• Its not cheating if we learn the non-linear preprocessing.

– This makes learning much more difficult and much more
interesting (e.g. backpropagation)

• Its not cheating if we use a very big set of non-linear
features that is task-independent.

– Support Vector Machines do this.

– They have a clever way to prevent overfitting (lecture 23)

– They have a clever way to use a huge number of
features without requiring nearly as much computation as
seems to be necessary (lecture 24).

quadratic discrimination: f(z) = zTPz + qTz + r

xT
i Pxi + qTxi + r ≥ 1, yT

i Pyi + qTyi + r ≤ −1

can add additional constraints (e.g., P ¹ −I to separate by an ellipsoid)

polynomial discrimination: F (z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial

Geometric problems 8–14

A hierarchy of model classes

• Some model classes can be arranged in a
hierarchy of increasing complexity.

• How do we pick the best level in the hierarchy
for modeling a given dataset?

A way to choose a model class

• We want to get a low error rate on unseen data.

– This is called “structural risk minimization”

• It would be really helpful if we could get a guarantee of
the following form:

Test error rate =< train error rate + f(N, h, p)

Where N = size of training set,

h = measure of the model complexity,

p = the probability that this bound fails

We need p to allow for really unlucky test sets.

• Then we could choose the model complexity that
minimizes the bound on the test error rate.

A weird measure of model complexity

• Suppose that we pick n datapoints and assign labels of +

or – to them at random. If our model class (e.g. a neural

net with a certain number of hidden units) is powerful

enough to learn any association of labels with data, its

too powerful!

• Maybe we can characterize the power of a model class

by asking how many datapoints it can learn perfectly for

all possible assignments of labels.

– This number of datapoints is called the Vapnik-

Chervonenkis dimension.

– Creationism has infinite VC dimension.

An example of VC dimension

• But we cannot deal with some of the possible labelings of four
points. A 2-D hyperplane line does not shatter 4 points.

• Suppose our model class is a hyperplane.

• In 2-D, we can find a plane (i.e. a line) to deal with any

labeling of three points. A 2-D hyperplane shatters 3 points

Some examples of VC dimension

• The VC dimension of a hyperplane in 2-D is 3.

– In k dimensions it is k+1.

• Its just a coincidence that the VC dimension of a

hyperplane is almost identical to the number of

parameters it takes to define a hyperplane.

• A sine wave has infinite VC dimension and only 2

parameters! By choosing the phase and period carefully

we can shatter any random collection of one-dimensional

datapoints (except for nasty special cases).

)sin()(xbaxf 

The probabilistic guarantee

where N = size of training set

h = VC dimension of the model class

p = upper bound on probability that this bound fails

So if we train models with different complexity, we
should pick the one that minimizes this bound

Actually, this is only sensible if we think the bound is
fairly tight, which it usually isn’t. The theory provides
insight, but in practice we still need some witchcraft.

2

1

)4/log()/2log(







 


N

phNhh
EE traintest

Preventing overfitting when using big sets of features

• Suppose we use a big set of features
to ensure that the two classes are
linearly separable. What is the best
separating line to use?

• The Bayesian answer is to use them
all (including ones that do not quite
separate the data.)

• Weight each line by its posterior
probability (i.e. by a combination of
how well it fits the data and how well it
fits the prior).

• Is there an efficient way to
approximate the correct Bayesian
answer?

Support Vector Machines

• The line that maximizes the minimum

margin is a good bet.

– The model class of “hyper-planes

with a margin of m” has a low VC

dimension if m is big.

• This maximum-margin separator is

determined by a subset of the

datapoints.

– Datapoints in this subset are

called “support vectors”.

– It will be useful computationally if

only a small fraction of the

datapoints are support vectors.

The support vectors

are indicated by the

circles around them.

Training a linear SVM

• To find the maximum margin separator, we have to solve

the following optimization problem:

• This is tricky but it’s a convex problem. There is only one

optimum and we can find it without fiddling with learning

rates or weight decay or early stopping.

– Don’t worry about the optimization problem. It has been

solved. Its called quadratic programming.

– It takes time proportional to N^2 which is really bad for

very big datasets.

possibleassmallasisand

casesnegativeforb

casespositiveforb

c

c

2||||

1.

1.

w

xw

xw





Testing a linear SVM

• The separator is defined as the set of points for

which:

casenegativeaitssaybifand

casepositiveaitssaybifso

b

c

c

0.

0.

0.







xw

xw

xw

A Bayesian Interpretation

• Using the maximum margin separator often

gives a pretty good approximation to using all

separators weighted by their posterior

probabilities.

What to do if there is no separating plane

• Use a much bigger set of features.

– This looks as if it would make the computation

hopelessly slow, but in the next lecture we will

see how to use the “kernel” trick to make the

computation fast even with huge numbers of

features.

• Extend the definition of maximum margin to

allow non-separating planes.

– This can be done by using “slack” variables

Introducing slack variables

• Slack variables are constrained to be non-negative.

When they are greater than zero they allow us to cheat

by putting the plane closer to the datapoint than the

margin. So we need to minimize the amount of cheating.

This means we have to pick a value for lamba (this

sounds familiar!)

possibleassmallasand

callforwith

casesnegativeforb

casespositiveforb

c

c

c

cc

cc

















2

||||

0

1.

1.

2
w

xw

xw

A picture of the best plane with a slack variable

