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• Each training case consists of an input vector x and a 
desired output y (there may be multiple desired outputs 
but we will ignore that for now)

– Regression: Desired output is a real number

– Classification: Desired output is a class label (1 or 0 
is the simplest case). 

• We start by choosing a model-class

– A model-class is a way of using some numerical 
parameters,   W,  to map  each input vector, x, into a 
predicted output y

• Learning usually means adjusting the parameters to 
reduce the discrepancy between the desired output on 
each training case and the actual output produced by 
the model.

Supervised Learning
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Linear neurons

• The neuron has a real-

valued output which is a 

weighted sum of its inputs

• The aim of learning is to 

minimize the discrepancy 

between the desired output 

and the actual output

– How de we measure the 

discrepancies?

– Do we update the weights 

after every training case?

– Why don’t we solve it 

analytically?

xw
T

i

i

ixwy ˆ

Neuron’s estimate of 

the desired output

input

vector

weight

vector



A motivating example

• Each day you get lunch at the cafeteria.

– Your diet consists of fish, chips, and beer.

– You get several portions of each

• The cashier only tells you the total price of the meal

– After several days, you should be able to figure 

out the price of each portion.

• Each meal price gives a linear constraint on the 

prices of the portions:
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Two ways to solve the equations

• The obvious approach is just to solve a set of 

simultaneous linear equations, one per meal.

• But we want a method that could be 

implemented in a neural network.

• The prices of the portions are like the weights in 

of a linear neuron.

• We will start with guesses for the weights and 

then adjust the guesses to give a better fit to the 

prices given by the cashier.
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The cashier’s brain

Price of meal = 850

portions 

of fish

portions 

of chips

portions 

of beer

150         50              100

2                  5               3

Linear 

neuron



• Residual error = 350

• The learning rule is:

• With a learning rate      of 

1/35, the weight changes 

are +20, +50, +30

• This gives new weights of 

70, 100, 80

• Notice that the weight for 

chips got worse!

A model of the cashier’s brain

with arbitrary initial weights
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Price of meal = 500

portions 

of fish

portions 

of chips

portions 
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50         50              50

2                  5               3





Behaviour of the iterative learning procedure

• Do the updates to the weights always make them get 

closer to their correct values?  No!

• Does the online version of the learning procedure 

eventually get the right answer? Yes, if the learning rate 

gradually decreases in the appropriate way.

• How quickly do the weights converge to their correct 

values? It can be very slow if two input dimensions are 

highly correlated (e.g. ketchup and chips).

• Can the iterative procedure be generalized to much 

more complicated, multi-layer, non-linear nets? YES!



Deriving the delta rule

• Define the error as the squared 

residuals summed over all 

training cases:

• Now differentiate to get error 

derivatives for weights

• The batch delta rule changes 

the weights in proportion to 

their error derivatives summed 

over all training cases
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The error surface

• The error surface lies in a space with a 

horizontal axis for each weight and one vertical 

axis for the error. 

– For a linear neuron, it is a quadratic bowl. 

– Vertical cross-sections are parabolas. 

– Horizontal cross-sections are ellipses.
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• Batch learning does 

steepest descent on the 

error surface

• Online learning zig-zags 

around the direction of 

steepest descent
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Adding biases

• A linear neuron is a more 
flexible model if we 
include a bias.

• We can avoid having to 
figure out a separate 
learning rule for the bias 
by using a trick:

– A bias is exactly 
equivalent to a weight 
on an extra input line 
that always has an 
activity of 1.
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Binary threshold neurons

• McCulloch-Pitts (1943)

– First compute a weighted sum of the inputs 

from other neurons

– Then output a 1 if the weighted sum exceeds 

the threshold.
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The perceptron convergence procedure: 

Training binary output neurons as classifiers

• Add an extra component with value 1 to each input vector. 
The “bias” weight on this component is minus the 
threshold. Now we can forget the threshold.

• Pick training cases using any policy that ensures that 
every training case will keep getting picked

– If the output unit is correct, leave its weights alone.

– If the output unit incorrectly outputs a zero, add the 
input vector to the weight vector.

– If the output unit incorrectly outputs a 1, subtract the 
input vector from the weight  vector.

• This is guaranteed to find a suitable set of weights if any 
such set exists.



Weight space

• Imagine a space in which 

each axis corresponds to a 

weight.

– A point in this space is a 

weight vector.

• Each training case defines 

a plane. 

– On one side of the plane 

the output is wrong.

• To get all training cases 

right we need to find a point 

on the right side of all the 

planes.
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Why the learning procedure works

• Consider the squared 

distance between any 

satisfactory weight vector 

and the current weight 

vector.

– Every time the 

perceptron makes a 

mistake, the learning 

algorithm moves the 

current weight vector 

towards all satisfactory 

weight vectors (unless it 

crosses the constraint 

plane).

• So consider “generously satisfactory” 

weight vectors that lie within the 

feasible cone by a margin at least as 

great as the largest update.

– Every time the perceptron makes a 

mistake, the squared distance to all 

of these weight vectors is always 

decreased by at least the squared 

length of the smallest update vector.



What binary threshold neurons cannot do

• A binary threshold output unit 

cannot even tell if two single bit 

numbers are the same!

Same:     (1,1)  1;  (0,0)  1  

Different: (1,0)  0;  (0,1)  0

• The four input-output pairs  

give four inequalities that are 

impossible to satisfy:
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