
CSC321

Introduction to Neural Networks

and Machine Learning

Lecture 2: Two simple learning algorithms

Geoffrey Hinton

• Each training case consists of an input vector x and a
desired output y (there may be multiple desired outputs
but we will ignore that for now)

– Regression: Desired output is a real number

– Classification: Desired output is a class label (1 or 0
is the simplest case).

• We start by choosing a model-class

– A model-class is a way of using some numerical
parameters, W, to map each input vector, x, into a
predicted output y

• Learning usually means adjusting the parameters to
reduce the discrepancy between the desired output on
each training case and the actual output produced by
the model.

Supervised Learning

>

Linear neurons

• The neuron has a real-

valued output which is a

weighted sum of its inputs

• The aim of learning is to

minimize the discrepancy

between the desired output

and the actual output

– How de we measure the

discrepancies?

– Do we update the weights

after every training case?

– Why don’t we solve it

analytically?

xw
T

i

i

ixwy ˆ

Neuron’s estimate of

the desired output

input

vector

weight

vector

A motivating example

• Each day you get lunch at the cafeteria.

– Your diet consists of fish, chips, and beer.

– You get several portions of each

• The cashier only tells you the total price of the meal

– After several days, you should be able to figure

out the price of each portion.

• Each meal price gives a linear constraint on the

prices of the portions:

beerbeerchipschipsfishfish wxwxwxprice

Two ways to solve the equations

• The obvious approach is just to solve a set of

simultaneous linear equations, one per meal.

• But we want a method that could be

implemented in a neural network.

• The prices of the portions are like the weights in

of a linear neuron.

• We will start with guesses for the weights and

then adjust the guesses to give a better fit to the

prices given by the cashier.

)(,, beerchipsfish wwww

The cashier’s brain

Price of meal = 850

portions

of fish

portions

of chips

portions

of beer

150 50 100

2 5 3

Linear

neuron

• Residual error = 350

• The learning rule is:

• With a learning rate of

1/35, the weight changes

are +20, +50, +30

• This gives new weights of

70, 100, 80

• Notice that the weight for

chips got worse!

A model of the cashier’s brain

with arbitrary initial weights

)ˆ(yyxw ii

Price of meal = 500

portions

of fish

portions

of chips

portions

of beer

50 50 50

2 5 3

Behaviour of the iterative learning procedure

• Do the updates to the weights always make them get

closer to their correct values? No!

• Does the online version of the learning procedure

eventually get the right answer? Yes, if the learning rate

gradually decreases in the appropriate way.

• How quickly do the weights converge to their correct

values? It can be very slow if two input dimensions are

highly correlated (e.g. ketchup and chips).

• Can the iterative procedure be generalized to much

more complicated, multi-layer, non-linear nets? YES!

Deriving the delta rule

• Define the error as the squared

residuals summed over all

training cases:

• Now differentiate to get error

derivatives for weights

• The batch delta rule changes

the weights in proportion to

their error derivatives summed

over all training cases
i

i

nn

n

ni

n n

n

i

n

i

n

n

n

w

E
w

yyx

y

E

w

y

w

E

yyE

)ˆ(

ˆ

ˆ

)ˆ(

,

2

2

1

The error surface

• The error surface lies in a space with a

horizontal axis for each weight and one vertical

axis for the error.

– For a linear neuron, it is a quadratic bowl.

– Vertical cross-sections are parabolas.

– Horizontal cross-sections are ellipses.

E w1

w2

• Batch learning does

steepest descent on the

error surface

• Online learning zig-zags

around the direction of

steepest descent

w1

w2

w1

w2

Online versus batch learning

constraint from

training case 1

constraint from

training case 2

Adding biases

• A linear neuron is a more
flexible model if we
include a bias.

• We can avoid having to
figure out a separate
learning rule for the bias
by using a trick:

– A bias is exactly
equivalent to a weight
on an extra input line
that always has an
activity of 1.

21 wwb

i

i

iwxby ˆ

211 xx

Binary threshold neurons

• McCulloch-Pitts (1943)

– First compute a weighted sum of the inputs

from other neurons

– Then output a 1 if the weighted sum exceeds

the threshold.

y

i

i

iwxz

z1 if

0 otherwise

y

z

1

0

threshold

The perceptron convergence procedure:

Training binary output neurons as classifiers

• Add an extra component with value 1 to each input vector.
The “bias” weight on this component is minus the
threshold. Now we can forget the threshold.

• Pick training cases using any policy that ensures that
every training case will keep getting picked

– If the output unit is correct, leave its weights alone.

– If the output unit incorrectly outputs a zero, add the
input vector to the weight vector.

– If the output unit incorrectly outputs a 1, subtract the
input vector from the weight vector.

• This is guaranteed to find a suitable set of weights if any
such set exists.

Weight space

• Imagine a space in which

each axis corresponds to a

weight.

– A point in this space is a

weight vector.

• Each training case defines

a plane.

– On one side of the plane

the output is wrong.

• To get all training cases

right we need to find a point

on the right side of all the

planes.

an input

vector with

correct

answer=1

bad

weights

good

weights

o
the origin

an input

vector with

correct

answer=0

Why the learning procedure works

• Consider the squared

distance between any

satisfactory weight vector

and the current weight

vector.

– Every time the

perceptron makes a

mistake, the learning

algorithm moves the

current weight vector

towards all satisfactory

weight vectors (unless it

crosses the constraint

plane).

• So consider “generously satisfactory”

weight vectors that lie within the

feasible cone by a margin at least as

great as the largest update.

– Every time the perceptron makes a

mistake, the squared distance to all

of these weight vectors is always

decreased by at least the squared

length of the smallest update vector.

What binary threshold neurons cannot do

• A binary threshold output unit

cannot even tell if two single bit

numbers are the same!

Same: (1,1) 1; (0,0) 1

Different: (1,0) 0; (0,1) 0

• The four input-output pairs

give four inequalities that are

impossible to satisfy:

21

21

,

0,

ww

ww

Data Space

(not weight space)

0,1

0,0 1,0

1,1

The positive and negative cases

cannot be separated by a plane

