Prolog

Reading: Sethi, Chapter 11.

e Overview

e Predicate Calculus

e Substitution and Unification
e Introduction to Prolog

e Prolog Inference Rules

e Programming in Prolog

- Recursion

List Processing
Arithmetic

Higher-order programming
Miscellaneous functions

e Conclusion

Prolog
Programming in Logic

e Idea emerged in early 1970’s;
most work done at Univ. of Edinburgh.

e Based on a subset of first-order logic.

— Feed it theorems and pose queries,
system does the rest.

e Main uses:

— Originally, mainly for natural language
processing.

— Now finding uses in database systems

and even rapid prototyping systems of
industrial software.

e Popular languages: Prolog, XSB, LDL,
Coral, Datalog, SQL.

Logic Programming Framework

Query:
Is q(X1,XN) true?

Programming Environment

Knowledge Base:
Facts €9 Rules

Proof Procedure

Answer:
“Yes/No”

& variable bindings

Declarative Languages

In its purest form, Logic programming is an
example of declarative programming.

Popular in database systems and artificial in-
telligence.

Declarative specifications: Specify what you
want, but not how to compute it.

Example. Find X and Y such that

3X+2Y=1
X -Y=4

A method (program) for solving these is how
to get values for X and Y. But all we gave
was a specification, or declaration of what we
want. Hence the name.

Examples

e "'Retrieve the telephone number of the per-
son whose name is Tom Smith” (easy)

e " Retrieve the telephone number of the per-
son whose address is 13 Black St” (hard)

e ""'Retrieve the name of the person whose
telephone number is 123-3445" (hard)

Each command specifies what we want but
not how to get the answer. A database sys-
tem would use a different algorithm for each
of these cases.

Can also return multiple answers:
e '"'Retrieve the names of all people who live
on Oak St.”

Algorithm = Logic + Control

e Users specify “logic” — what the algorithm
does — using logical rules and facts.

e "“Control” —how the algorithm is to be im-
plemented — is built into Prolog.

i.e., Search procedures are built into Prolog.
They apply logical rules in a particular order
to answer user questions.

Example. P if Q; and Qo and ... and Qg
can be read as

to deduce P:
deduce Q1
deduce Q-

deduce Qg

Users specify what they want using classical
first-order logic (predicate calculus).

Classical First-Order Logic

e [he simplest kind of logical statement is an
atomic formula. e.g.,

man (tom) (tom is a man)
woman (mary) (mary is a woman)

married(tom,mary)
(tom and mary are married)

e More complex formulas can be built up using
logical connectives. A, VvV, ~, VX, dX. e.g.,

smart (tom) V dumb(tom)
smart (tom) V tall(tom)
~ dumb (tom)

dX married(tom, X)
(tom is married to something)

VX loves(tom, X)
(tom loves everything)

JX [married(tom, X) A female(X) A human(X)]

(tom is married to a human female)

Logical Implication

rich(tom) V ~smart(tom)

T his implies that if tom is smart, then he must
be rich. So, we often write this as

rich(tom) < smart(tom)

In general, P+ @ and (Q — P are abbrevia-
tions for Pv ~ Q.

For example,

VX [(person(X) A smart(X)) — rich(X)]
(every person who is smart is also rich)

3X mother (john,X)
(john has a mother)

3X [mother(john,X) A
VY mother(john,Y) — Y = X]
(john has exactly one mother)

Horn Rules

Logic programming is based on formulas called
Horn rules. These have the form

Veqi..xp [A+ By ABs... A B]]

where k,7 > 0.

For example,

VX,Y [A(X) + B(,Y) A C(Y)]
VX [A(X) « B(X)]

VX [A(X,d) <+ B(X,e)]

A(c,d) + B(d,e)

VX AX)

VX A(X,d)

A(c,d)

Note that atomic formulas are also Horn rules,
often called facts.

A set of Horn rules is called a Logic Program

Logical Inference with Horn Rules

LLogic Programming is based on a simple idea:
From rules and facts derive more facts

Example 1. Given the facts A, B, C, D,

and these rules:

(L) E < A AB
(2) F«< CAD
(3) G+ EAF

From (1), derive E
From (2), derive F
From (3), derive G

Example 2. Given these facts:

man (plato) (“plato is a man’)
man (socrates) (“socrates is a man’')

and this rule:
VX [man(X) — mortal (X)]
(“all men are mortal”)

derive: mortal(plato), mortal(socrates).

10

Recursive Inference

Example.

Given:

VX [mortal(X) — mortal(son of (X))]
mortal (plato)

Derive:

mortal (son_of (plato))
(using X = plato)

mortal (son_of (son_of (plato)))
(using X = son_of (plato))

mortal (son_of (son_of (son_of (plato))))
(using X = son_of (son_of (plato)))

T his kind of inference simulates recursive pro-
grams (as we shall see).

11

Logic Programming

Horn rules correspond to programs, and a form
of Horn inference corresponds to execution.

For example, consider the following rule:
VX,Y p(X) + qX,Y) AN rX,Y) A s(X,Y)

Later, we shall see that this rule can be inter-
preted as a program, where

p IS the program name,

q,r,s are subroutine names,

X IS a parameter of the program, and

Y is a local variable.

12

Non-Horn Formulas

T he following formulas are not Horn:

A — ~ B
AV B
AV B<+ C

dX [A(X) « B(X)]
A+~ (B + 0

VX [flag(X) — [red(X) V white(X)]]
(“every flag is red or white")

VX Y [wife(X) — married(X,Y)]
(“every wife is married to someone”)

13

Non-Horn Inference

Inference with non-Horn formulas is more com-
plex than with Horn rules alone.

Example.

A < B
A+ C
BV C (non-Horn)

We can infer A, but must do case analysis:

either B or C is true.
if B then A
if C then A

Therefore, A is true in all cases.

Non-Horn formulas do not correspond to pro-
grams, and non-Horn inference does not cor-
respond to execution.

14

Logical Equivalence

Many non-Horn formulas can be put into Horn
form using two methods:

(1) logical equivalence
(2) skolemization

Example 1. Logical Equivalance.

~A +— ~B = ~A V ~(~B)
= ~A V B
= BV ~A
(Horn) = B <« A
Logical Laws:
~~A = A
~ (A V B) = ~A AN ~B
AV BAC) = (AVB)ACMLYVO
A < B = AV ~B

Example 2. Logical Equivalance.

A+~ (BVC) AV ~(B V C)
AV (~B A ~C)
(AV ~B) A (AV ~C)
(A< B) AN (A« C)

(Horn)

15

Example 3. Logical Equivalence.

A<+ (B + 0 AV ~(B + C
AV ~(B V ~C)
AV (~B A ~~C)
AV (~B A C)
(AV ~B) AN (AV C)
(A< B) AN (AV C)

(non Horn)

In general, rules of the following form cannot
be converted into Horn form:

Ve[(A1 V...V Ap) < (B1 A ... AN Bmn)]

For example,

(A V B) <« (C A D)

(AV B) < C

(A V B)

VX [A(X) V B(x)] + [C(X) A D(X)]

1.e., If it is possible to infer a non-trivial dis-
junction from a set of formulas, then the set
IS inherently non-Horn.

(A rule like pVq < q infers a trivial dis-
junction, since the rule is a logical tautology.
Such rules can simply be ignored.)

16

Skolemization

Non-Horn formulas like 3z A(z) can be con-
verted to Horn form.

Example 1.

Replace (1) 33X mother(john,X) (non-Horn)
with (2) mother(john,m) (Horn)

Here, m iSs a new constant symbol, called a
skolem constant, that stands for the (unknown)
mother of john.

Note: (1) Z (2), but they say (almost) the
same thing. In particular, (1) can sometimes
be replaced by (2) during inference, as we
shall see.

17

Skolemization (Cont’d)

Example 2. A non-Horn formula:

(3) VX [person(X) — JY mother(X,Y)]
(“every person has a mother")

Let m(x) stand for the (unknown) mother of
X. Then, we can replace (3) by a Horn rule:

(4) VX [person(X) — mother(X,m(X))]

m(X) is called a skolem function.

It is an artificial name we have created.

e.g., m(mary) denotes the mother of mary.
m(tom) denotes the mother of tom.
m(jfk) denotes the mother of jfk.

So, we only need dX because we don’t have a
name for X. By creating artifical names (skolem
symbols), we can eliminate many 3's, and
convert many formulas to Horn rules, which
Prolog can then use.

Skolemization is a technical device for doing

inference.
18

Inference with Skolemization

(1) VX [man(X) — person(X)]
(“every man is a person’)

(2) VX 3Y [person(X) — mother(X,Y)]
(“*every person has a mother”—non Horn)

(3) VX,Y [mOther(X,Y) — 1OVeS(Y,X)]
(“every mother loves her children”)

(4) man(plato) (“plato is a man’)

Question. JY loves(Y,plato)
(“does someone love plato?”)

Step 1. Skolemize (2) to get a Horn rule:
(2') VX [person(X) — mother(X, m(X))]

Step 2. Use Horn inference:

person(plato) from (1)
mother (plato,m(plato)) from (2')
loves(m(plato),plato) from (3)

Thus. 4dY loves(Y,plato)
1.e., Y = m(plato). So, answer is YES.

19

Skolem Dependencies

(1) 3IX VY p(X,Y)

skolemizes to VY p(a,Y),
where a is a skolem constant.

(2) VY IX pX,Y)

skolemizes to VY p(b(Y),Y),
where b is a skolem function.

i.e., in (2), X depends on Y.
But in (1), X is independent of Y.

(3) VX VY 3Z q(X,Y,2Z2)

skolemizes to VX VY q(X,Y,c(X,Y)),
where ¢ is a skolem function of both X and Y.

i.e., in (3), Z depends on both X and Y.

20

Skolem Dependencies —
Concrete Examples

JdX VY loves(X,Y) (“someone loves everybody”)

= VY loves(p,Y) (“p loves everybody”)

VX dY mother(X,Y) (“everyone has a mother”)

= VX mother(X,m(X))
(“m(X) is the mother of X")

VX VY dZ owns(X,Y) — document(Z,X,Y)

(“if X owns Y, then there is a document, Z, saying
that X owns Y")

= VX VY owns(X,Y) — document(d(X,Y),X,Y)

(“d(X,Y) is a document saying that X owns Y")

21

