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ABSTRACT

Hidden Markov modeling is a probabilistic technique for the study
“of time series. Hidden Markov theory permits modeling with many of
the classical probdability distributions. The costs of implementation are
linear in the length of data. Models can be nested to reflect hierar-
chical sources of knowledge. These and other desirable features have
made hidden Markov methods increasingly attractive for problems in
language, speech and signal processing. In this paper, the basic ideas
are introduced by elementary ezamples in the spirit of the Polya urn
models. The main tool in hidden Markov modeling is the Baum-Welch
(o7 forward-backward) algorithm for mazimum likelihood estimation of
the model parameters. This iterative algorithm is discussed both from
an antuilive point of view as an ezercise in the art of counting and

< from_a formal point of view via the information-theoretic Q-function.

Selected examples drawn from the literature illustrate how the Baum-
Welch technique places a rich variely of computational models at the
disposal of the researcher.

1. Introduction Hidden Markov modeling is a technique for the
study-of observed items arranged in a discrete-time series. The items
in the series can be countably or continuously distributed; they can

" be scalars or vectors. The technique uses stochastic methods; a time

series is generated and analyzed by a parametric probability model. It

" is parametric in the sense that it is completely described by a finite list
of real numbers. ‘A hidden Markov model has two components: a finite-
state Markov chain and a finite set of output probability distributions.
If the model is looked at generatively, the Markov chain synthesizes a
sequence of states, (called a path) and the output distributions then
turn ‘this -path intc a time series. If it is looked at analytically, an
observed time series gives evidence about the hidden path and the
parameters of the generating model.

The work of Markov [48] and Shannon [65],[66] was concerned with
Markov chains:. The state sequence is observed in a Markov chain; see
Billingsley [15]. In a hidden Markov model, the output probabilities im-
pose a veil (Ferguson, [28]) between the state sequence and the observer
of the time series. In the effort to lift the veil, a substantial body of
theory has been developed over the past twenty-five years. The initial
work dealt with firiite probability spaces and addressed the problems

_of tractability of probability computation, the recovery of the hidden
states, -iterative maximum-likelihood estimation of model parameters

* from observed time series and the proof of consistency of the estimates;
see Bauni {10], Baum and Eagon [11], Baum and Petrie [12].

A major development in the theory (1970) was the maximization
technique of Baum, Petrie, Soules and Weiss [13] that extended cover-
age to many of the classical distributions. This work has itself lead to a
wide range of theoretical outgrowths. They include a number of gener-
alizations of both the spatial and temporal components of the models,
for example: variable-duration hidden Markov models [30], continuous
multivariate hidden Markov models [47], hidden-filter hidden Markov
models [58], and trainable finite-state (hidden) grammars [8]. A special
case of the results in [13] has been designated by Dempster et al as the
EM algorithm; see [23], especially pp. 28-29 and [62].

In ‘thé past few years there has been an explosive growth in the
number of papers reporting applications of hidden Markov modeling.
The applications are wide-ranging and if we include papers that ref-

erence algorithms derived from hidden Markov techniques they con-
stitute a formidable body of literature. Some of the areas of research
are: automatic speech recognition [5], [6], [37], [1], [61], [44], [19], [59],
language modeling [17], {54], [35), [38], [40], coding theory [18], [2],
pattern recognition [67]; signal processing [25], [26], financial modeling
[20], bioclogical monitoring [70], and biostatistics [34],[56].

A number of survey papers with emphasis on applications to speech
and language have helped to popularize the subject: Jelinek [37], Bahl
et al [4], Levinson et al [46], and Levinson [43]. Here, we focus on the
models themselves; examples and especially applications are presented
mainly to clarify ideas. I thank J.D. Ferguson, L.A. Liporace and A.G.
Richter for sharing their insights.

2. Mixtures as degenerate hidden Markov models Suppose we
have an urn containing a mixture-of black and white balls. Let b(B) be
the fraction of black balls and b(W) the fraction of white balls so that
b(B) + b(W) = 1. We will treat the urn as a probability model (see
Feller [27]) and refer to the vector A = (b(B),b(W)) as the parameter
vector of the model. We generate a T-long observation sequence of colors
O = (04,...,0r) by sampling the urn T times at random. We use the
phrase “at raridom” to.mean “with replacement and according to the:’
uniform distribution”. This is the classical situation of Bernoulli trials.
Let #B be the number of black balls drawn and #W the number of
white balls. The probability of the sequence of observations is P,(0) =
b(B)#Bo(W)#W . If X'is unknown, its mazimum-likelihood estimate,
[21], is A = (#B/T,#W/T). Estimates formed by ratios of observed
counts are a persistent theme in what follows.

Consider next a model made from two urns (Urn 1 and Urn 2).
and a mug (call it Mug 0). Each of the urns has its own mixture of*
black balls and-white balls.  The mug contains a mixture of marked
stones: the marking on a stone is either “state 17 or “state 2”. See:
Figure 1. Let agy be the fraction of stones with the state 1 marking; =~
and ag» the fraction with the state 2 marking so that ag; +ao2 = 1. The
parameter vector is now: A= (ao1, doz, by (B), b1(W),ba(B), ba(W)): A
T-long observation sequence of colors O = (O4,...,07) is generated. as
follows. At each time ¢in the interval 1,2,...,T select a stone from the
mug at random. The marking on the stone is, say, “state s,”, (where
s¢ is either a 1 or a 2). Now select a ball at random from Urn s¢. Oy is
the color of that ball,

This simple example already possesses properties associated with
a hidden Markov model: it is a generative mechanism for creating ob-
servations and the mechanism is a stochastic process with a hidden

Figure 1. Urns containing colored balls. Mugs containing marked
stones. : :
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component. In the process of generating the observed sequence of col-
ors O, a sequence of stones (i.e., states) s = (sy,5,...,57) is also
generated. Since s is not observed, it is referred to it as a hidden se-
quence or path. For example, with T = 6, the state sequence obtained
by sampling stones from the mug might be s = (1,1,1,2,1,2) and the
observation sequence obtained by sampling balls from the urns might
be O = (B, W, B,W, W, B). See Figure 2. Ferguson’s veil is due to the
urns whose sampling obscures the view of the sequence of stones. The
observer obtains only probabilistic evidence about the stones.

Figure 2. Sampling of the Urns veils the sampling of a single Mug.

The probability of an observation sequence generated by the model
involves a sum over all possible configurations of the hidden component.
However, since each observation is generated independently, the prob-
ability of the entire sequence is easily evaluated:

T T
0) =T Pr(0s) = [[(Pr(Oc,50 = 1) + PA(Oy, 50 = 2))
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3. Recovery of a mixture model from observations We have
discussed the synthesis of observations from the model. We turn now
to the inverse problem: the analysis of the model and the hidden path
from these observations. The recovery of such information is a central
issue in hidden Markov modeling.

The prior probability of state s at time 7 is Py(s, = ) = ag,. Given
the additional evidence of the observation sequence we define - (s), the
posterior probability of state s at time 7 to be ,(s) = Py(s, = s|0).
We then have

7:(s) =PA(0,57 = 5)/ PA(0) = PA(Os, 5, = s) [ [ PA(01)/PA(0)
tET
=0:b:(0r)/ (a0151(Or) + ao2b2(0:))

and v,(1) + 7-(2) = 1. Thus, if the parameters of the true model are
known, we can make an educated guess about an event (the stone cho-
sen at time 7) that occurred during the generation of the observations
but which was not itself observed. In this manner, the entire hidden
path can be estimated.

Conversely, if the parameter values of the true model are unknown,
but (somehow) the hidden path is made known to us, we can form a
maximum likelihood estimate J, of the true model. For example, by (W)
is the ratio of the number of times a white ball is drawn from Urn 1 to
the number of times a ball is drawn from Urn 1.

Usually, however, we are given neither the path nor the true model,
but only the observations (which we assume to come from the true
model). Closed-form maximum-likelihood parameter estimation is no

longer possible. What can be done ? One natural approach is the
following. We start with any model whose parameter vector A con-
tains no zeros. Probability computations are, for the moment, to be
based on this model, as if it were the true model. Recalling the def-
inition of 7,(1), we see that 3°,_, 7 7:(1) is the expected number of
draws from Urn 1, given the observations and the model. Similarly
3 _t.0,=w 7:(1) is the expected number of draws from Urn 1 that yield
a white ball, again conditioned on the observations and the model.
It is intuitively appealing to use this evidence to replace b;y(W) by
(W) = Y0=w 1)/ Z,=1,T 7:(1). 1If apy is then replaced by
Go1 = Y=, ¢ 7t(1)/T, and so on, a new model A is created.

It turns out this intuitive idea is well-founded. Direct calculation
(Hartley, 1958, [34}), early computer experiments (Welch, [71]) and the
theory to be discussed later all indicate that (except at critical points
of the probability as a function of A) the probability of the observations
calculated according to the new model is greater than the probability
according to the old model: P5(0) > PA(0). If X is now thought of
as an old model, the procedure can be repeated until there is little or
no further improvement in the model (as measured by the increase in
probability). We make several such starts randomly dispersed across
the space of models. The best one, }, is our estimate of the true model.
The hidden state sequence is estimated from this final model.

It is implied by the content of Baum and Eagon [11] and Petrie [57]
that we generically recover the true model from a sufficiently long ob-
servation sequence. By “generically” we mean to imply some caveats:
there are symmetries associated with the naming of states, and there
are ambiguities caused by a true model with an equal number of stones
of each type, or with identical mixtures of balls in both urns, or with
zeros in the parameter vector. Grim, [33], applied this method to inde-
pendent sampling of mixtures for a number of classical distributions.

4. When time matters: an elementary hidden Markov model
The order of the observations played no role in the previous example.
It would have been enough to know how many balls of each color were
drawn. We go to the trouble of collecting a time series rather than
merely a histogram, precisely when we expect that there is information
in the order in which the items are dealt out. By enriching our model
to include a Markov chain, we model dependencies between adjacent
observations by stochastic dependencies between the hidden states.

Consider then a model consisting of two urns (Urn 1 and Urn 2
again) and three mugs (Mug 1 and Mug 2 in addition to Mug 0). Each
mug has its own mixture of stones marked “state 1” and “state 2”. See
Figure 1. The parameter vector is now: A = (ao1, ao2, a1, @12, as, asa,
b1(B), b1(W), ba(B), ba(W)).

Generate a T-long observation sequence O as follows. Select a
stone at random from Mug 0; its marking is, say, “state s;”. Select
a ball at random from Urn s1; its color is O1. Now select a stone at
random from Mug s;; its marking is, say, “state s”. Continue in this
way using the current state to obtain both the current observation and
the next state until a total of 7' observations O = (0;,0,...,07)

i

Figure 3. Sampling of the Urns veils the sampling of a sequence of
Mugs.



have been generated. See Figure 3. Again denote the hidden state
sequence by s = (s1,52,...,57).

" Abstractly, what we now have is an (order one) 2-state hidden
Markov model. Tt is an order one model because each successor state is
selected as a probabilistic function of one predecessor state. Although
there are 2 states in this example, any finite number, S, of states is
_possible. (In the example this would correspond to S urns and S+ 1
mugs each with a mixture of stones bearing S different markings). It
is convenient to let S also be the name of the set of states.

; The probability vector ag = (ao1, @oz,- - - ,ao0s) (associated in the
_example with Mug 0) is the initial disiribution. The S by S row-
stochastic matrix A = (a,s) (whose rth row is associated with Mug r)
is the {ransition matriz. ag and A together constitute a Markov chain
of order one. The hidden state sequence s is produced by this chain.
See Figure 4.
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Figure 4. Generating a state sequence and observation sequence from
a hidden Markov model.

A hidden Markov model is said to have a finite oufput alphabet
if the observed items (also called outputs) lie in a finite set with K
elements. In our example, the outputs are {B, W} and K = 2. Other
éxamples of alphabets include the first K integers, the English alpha-
bet plus word space, the items in a vector-quantized code book, the
set of phonemes in a language, and the set of words in a language. Al-
ternatively, the observations can lie in a continuum or in a countably
infinite set. Examples of observations in a continuum include real and
complex, scalar and vector signal values (as seen for example in speech,
‘or at the output of biological or industrial monitoring devices).

In the case of a finite alphabet, for each state s, the vector b, =
(54(1),84(2), . .., by(K)) (associated in the example with Urn s) is called
the output probabilily vecior for state s. The output probability can be

- general (an arbitrary distribution) or it can be parameterized (as, say, a
binomial distribution). In the case of continuous output, each state s is
associated with its own parametric probability density, b,. The output
probabilities map the state sequence s into the observation sequence
0; see Figure 4. again.

A hidden Markov model is summarized by its parameter vector
A ="(ao, A,b1,b2,...,bs).

Although many of the early papers referred to the model as a
“probabilistic function of a Markov chain”, the less cumbersome phrase
“hidden Markov model” coined by L. P. Neuwirth is better known to-
day. The description of a hidden Markov model by the sampling of urns
also began with Neuwirth [55]. In some of the literature, e.g., [7], [37],
[4]; (3], output probabilities depend on a pair of states (i.e., by -(k)).
The two variants have parallel theories. More generally, output proba-
bilities can depend on a fixed window back into the recent past on both

“states and observations. We note that a hidden Markov model is not a

. Markov process of any finite order.

5. Recovery of a hidden Markov model from observations
Having discussed the generation of observations from a hidden Markov
model, we once again turn to the inverse problem: the analysis of
the model from observations of it. Following the expository style of
. J.D.Ferguson[29], we consider three basic problems of hidden Markov
. analysis. Suppose we are given a T-long sequence O of observations
‘on-an alphabet K, and an integer S. We assume that the observa-
tions were generated by an S-state hidden Markov model. Let A =
(a0, A;b1, b2, . .., bs) be a model, but not necessarily the true model for
 the data. Let Py stand for probability or probability density according
to what is required for the model. The basic problems are:

I. Compute P5(0O), the probability of O based on A.
II. Estimate the true model in the maximum likelihood sense, that is,
find the model A that maximizes P;5(O).

TII. Estimate the hidden state sequerice s from O and .

Let S be the set of state sequences (or path space), then: Po(0) =
Yses PA(0,8) = Y s P,(O|s)Px(s). Since PA(Ols) = thl’T bs,(Oy)
and Pa(s) = Pa(s1) [Limap Pr(selst,is, 50-1) = @osy [limar @sioasis
we have: :

T.
Py(0) = 3 a0s s (01) [T as01s:bs,(00)-
1=2

s€S

S contains ST members, so that Py(0) is a sum of ST terms, This
sum becomes intractable as S and T grow. However, there is a better
way to make the computation: [69],-[18], [13], [10], [2], [$1]. For any
time t and state s define s

au(s) =PA(01,-.., 048 = 5)
ﬁ,(s) =P,\(O¢+1, L ,OT|S¢ = S).

We have a;(s) = aosb,(01) and for any ¢ =2,...,T

ay(s) = Za,_l(f)a,,b,(ot).

re€S

Thus PA(0) = 3,5 @r(s). This iteration solves Problem I by a calcu-
lation that grows linearly in T rather than exponentially, as we might
have expected. Let fr(s) = 1;for any 1t =T—1,...,1 we have

Bu(s) = Z b (0441) By (r).

res

The alpha and beta inductions are frequently called the forward and
backward calculations; see [37]; [4].  Another exposition, derived from
Ferguson’s presentation {29], ¢an be found in [60].

We observe that Px(O,s; = ) = au(s)B:(s), since the later obser-
vations are independent of the earlier ones, in the presence of s; = s.
Tt is now easy to compute certain important posterior probabilities

21(5) Py (50 = 510) = PA(0, 51 = 5)/PA(0) = a(5)8u(s)/ Pr(0)
1e(r,5) E Py (¢ = 1, 5141 = 5[0) = a(r)ar,sbs (Or1)Bi1(s)/PA(O).

Once again we see that although Py(O,s; = s) is a sum across
all state sequences s € S that pass through s at time ¢, the posterior
probability 7:(s) is efficiently calculated from the alphas and betas.
See Figure 5., keeping in mind that a,(s) is a sum across all partial
state sequences ending at time't in state s and B;(s) is a sum across all
partial state sequences beginning at time ¢ in state s.

Assume for the moment that we believe the current model A. Prob-
Jem III can then be solved in several different senses [29]. If we want
the state sequence s € S with-the highest probability among all state
sequences, then a dynamic program (Bellman’s algorithm, [14]) deter-
mines the sequence for us. We need only replace the summation by
maximization in the alpha induction and keep track, with a pointer,
7(s,1), to the next-to-last State on the highest-probability partial state-
sequence ending in state s attime ¢, ‘Although for many purposes this
path is adequate, the sequence whose state at time ¢ is arg max,es v:(s)
possesses a greater expected number of correct states. Of course it may

Time 1 2.3 4 5 6
State 1 7\ —»e
State 2 ~0—-o ° —>e
Output Oy .0y 'O Oy O O

Figure 5. For fixed t, each of the 7;(s) is proportional to the sum of
the Py(0,s) over all paths s that pass thru state s at time ¢.



contain some zero probability transitions. If that is a concern also, then
a dynamic program through the +,(r, s) array will get the legal scquence
with the greatest expected number of correct state digraphs.

6. The Baum-Welch Algorithm The original solution of Problem
II appeared in [11]; that paper dealt specifically with a finite alphabet
and the general output distribution. A yet more fruitful technique
based on the Kullback-Leibler number [41] was presented by Baum,
Petrie, Soules and Weiss in [13]. For models A and A they defined the
auziliary or Q-function:

Q(),3) =" Py(0,s5)log P5(0, ).

s€S

Although at first glance @ looks more complicated than P, it is in fact
easier to work with . First they showed that Q(X,X) > Q(},\) =
P5(0) > P5(0). (A three line proof, discovered by Liporace, is given
in [47].) Next they observed that A is a critical point of P if and only
if it is a critical point of @ as a function of X (i.c., with A held fixed):
OPy[0Xilx = 8Q(A, X)/dAi|5=y for any coordinate X; of A. Finally they
showed that for a broad class of models, Q as a function of }, has a
single critical point and this point is its unique global maximum. We
refer to this point (this model) as the Baum-Welch reestimate.

The class of models covered in [13] includes the general distribution
and the binomial distribution in the finite alphabet case, the Poisson
distribution in the case of countable outputs and both the univariate
normal and Gamma distributions among the continuous densities. For
the general distribution in the finite alphabet case, the Baum-Welch
reestimates are:

gs =71(5)

T-1
ar = 3 (ns)/
t=1

be(k)= )

t:04=k

T-1
DIPIRTCLY

s'€S t=1
T
7(8)/ 3 1(s)

for states r,s € S and letters k € K.

These formulas have intuitive interpretations based on expected
values computed with respect to the old model A. For example b, (k) is
the ratio of the expected number of times that letter k is observed on
a visit to state s to the expected number of times state s is visited. If
the Q-function is specialized to the case of a mixture (that is, to a hid-
den Markov model of order zero), the formulas reduce to the intuitive
reestimates given in the example in §3. See also Liporace [47].

The idea for solving Problem II is to iteratively improve tlie model
parameters with the aid of Q. Start from some initial model A and find
the Baum-Welch reestimate, X, by maximizing the Q-function. Now
take A to be the new initial model and repeat the process. By what
has been said, at each step, one of two things must happen: either
P5(0) > Py(0) or X is a critical point of PA(0). If P,(O) has only
finitely many critical points, then starting from several scattered initial
models and iterating each to convergence, one generally obtains a good
estimate of the maximum likelihood model A. See Figure 6. In practice,

PO

~

bN
Space of Models

AX

Figure 6. The probability function P5(O) on the space of models A.
Baum-Welch reestimation A — X climbs local hills. X is the maximum
likelihood model.

iterations are continued until some ad hoc criterion of convergence is
satisfied. This technique for solving Problems I and II is known both
as the Baum-Welch algorithm and as the forward-backward algorithm.
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The technique was developed independently by M.I. Shlesinger in
a paper on pattern recognition that appeared in the Russian journal
Kibernetika in 1968 [67]. Although that paper dealt with the case
of mixtures (i.e., without the Markov chain), the main ideas in the
algorithm were exposed. Shlesinger pointed out the important fact that
the algorithm applies to models whose output probabilities belong to a
particular parametric class whenever the weighted maximum likelihood
problem can be solved for an arbitrary single distribution in that class.

In a later paper, [25], Shlesinger and N.A. Esin extended the dis-
cussion to hidden Markov models and to hidden Markov models with
time-registered transition probabilities and multiple independent ob-
servation sequences. We note in passing that if 0 = (0?,07?,..., oM)
is a set of M independent observation sequences of various lengths gen-
erated by a single hidden Markov model, then the auxiliary function @
for the ensemble (appropriately defined in terms of state polysequences)
is related to the auxiliary functions Q™,m € M for the constituent se-
quences by the formula: Q(A, X)/Pr(0) = Yozt @A X)/P(0™).
The formula is useful in assembling Baum-Welch reestimates.

Since increasing () increases P the ideas above can be implemented
even when there is no single maximizing critical point of Q. In such
circumstances, gradient or other numerical methods are relied on to
increase Q. Even if a single critical point of @ exists, there may not be a
closed form expression for the Baum-Welch reestimate; again numerical
methods are needed. An example of this kind, applied to the gamma
distribution, is worked out by Levinson in [44].

7. Modeling temporal structure The Markov chain structure is
the representation of the flow of information in a hidden Markov model.
In complex problems there may exist a hierarchy of levels of informa-
tion. For example, in speech one has at least semantic, syntactic, and
acoustic-phonetic levels. The entire information hierarchy can be as-
sembled into one grand hidden Markov model or integrated network, (6],
(5], [4], with a sparse transition matrix. At the finest level, a number
of elementary hidden Markov models directly produce observed items.
Successively higher levels of information are embedded by linking to-
gether models formed at lower levels. A commonly used elementary
model was introduced by Bakis [9]. In the Bakis model the transition
matrix has zeros on all diagonals below the main diagonal and on all
diagonals more than two above it. Paths enter only in state 1 and exit
only from state S. Bakis “machines” successfully represent events in
speech both at the integrated network level [6], [1], [19] and at lower
levels [61}, [59]. More general basic units can be considered.

It is possible to elaborate the temporal structure in a hidden
Markov model for a time series. There is good reason to want to do
this. The distribution of the lengths of repeated visits to a given state
necessarily falls off geometrically in a hidden Markov model. But it
may be that the process that plays out the states is not registered one-
for-one with the process that generates the observations; indeed the
meter may vary with the state. If observations arrive too infrequently
we may want to allow for visits to states without production of visible
output (or increase the rate of sampling). If they arrive too often we
may want to allow at least some minimum number of observations for
each visit to a state. Furthermore, the basic units of the hidden pro-
cess can be complex: during a visit to the unit one sort of an output
distribution may operate in the early portion and another sort later on.
These types of concerns are addressed in the following example.

Instead of producing a single observation according to b, during a
visit to state s one could first sample a duration distribution D, associ-
ated with the state and remain in the state for d times (with probability
Dy(d),d=1,2,...,D(s).) A total of d observations would be produced
according to b, or some other more elaborate output probability rule
associated with state s. The next state would then be chosen according
to the transition probabilities and the process repeated for this state.

This idea is called variable duration or variable-length output; it
was developed by Ferguson [30], originally to model pitch in speech.
Variable duration increases computational burden, but the inductive
calculations remain linear in T'. Let 7;(s, d) be the posterior probability
that a d long visit to state s begins at time ¢; it can be calculated from
appropriately defined alphas and betas. The Baum-Welch reestimate
for the duration distribution for state s is then



Dud) = Y nlsd)/ 33 (s, d)
1 t da’!

for d = 1,2,...,D(s). Poisson distributed durations were developed
in [30] and the binomial was mentioned as another tractable alterna-
tive. Russell and Moore also examined Poisson distributed durations
. in[64].: The Gamma distribution is the basis for the duration distribu-
~'tions studied by Levinson [44], [45]. The variable duration idea can be
-~ approximated with Bakis machines. The corresponding output prob-
~ abilities can be forced to be equal (the technical term for this is tied,
"[4]) or allowed to be free.
. The time order dependencies inherent in a Markov chain view may
not ‘be ‘appropriate to model a particular time series. “Word order
. in sentences” is a commonly cited example of this problem. A more
general class of dependencies is introduced into the model with the
replacement, due to Baker [8], of the Markov chain by a context-free
- grammar, thus creating a hidden grammar model. States are elaborated
into a finite set of non-terminal symbols A" and a finite set of terminals
K. The transitions are replaced by probabilistic production rules of
‘two types. Those of one type, {a.s,}, split a non-terminal e into a pair
of non-terminals f and g and those of the other type {c.;} send a non-
terminal e into a terminal k. The output probabilities are defined on
terminal symbols only . The idea is that each non-terminal e sitting at
anode in the parsing tree influences the entire interval of observations
hanging on the branch of the tree that stems from e.

For hidden grammars, the forward-backward algorithm becomes
an inside-outside algorithm whose computational burden grows as T3.
See Figure 7. Both P and Q become sums over parses instead of se-

~quences, Let T be the set of split intervals I = [t,u,v] where 1 <
t,t <u,u<v,v <T. Also define J be the set of non-empty intervals
J = [ti;v] contained in [1,T]. Let 4;(e, f,g) be the (posterior) proba-
bility that e produces the observations in the interval [t,v], f produces
those in [t;u] and g produces those in [u + 1,v] conditioned on the ob-
servations O. Similarly let 7;(e, k) be the (posterior) probability that
e and k both produce the observations in the interval [u,v] again con-
ditioned on O. The Baum-Welch reestimation formulas are once more
ratios ‘of expected values:

dgg= ule.f,0) S, Youlef,q)

Iez fly'eN TeT
Eop = E'yj(e,k)/ Z Z'y,y(e,k’).
Jeg reKJeT
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Figure 7. The inside-outside algorithm for hidden grammars leads to
the posterior probabilities and the Baum-Welch reestimate.

8. Modeling spatial structure The Q-function view-point has
been useful in widening the scope of the spatial (output) component of
models for'time series. We give some examples below.

Liporace [47] extended the Q-function and Baum-Welch reesti-
mation to the broad class of hidden Markov models with elliptically-
symmetric continuous outputs; included in this class are the N dimen-
sional multivariate Gaussian densities. In such a model, for each state
s, there is a multivariate Gaussian density with an N-long mean vector
is and a positive-definite N by N covariance matrix £,. The Baum-
Welch reestimates are:

11

=

SR
7()0:/ 3 7(s)

1l
-

Z,

0=

. o T
1e(5)(O0r = 1) © (O = fis)/ Y _n(s)
AR t=1

where for vectors u and v, u ®v is the matrix whose ijth entry is the
product w;v;. The reestimates are valid if, among the T observation
vectors, some N + 1 of them form an affine basis. These densities have
had wide applicability for time series of observations of real vectors:
{63],[59],[44],[3]. See also Nadas [50]

Given a signal, ¥ = (y-n4i,:-:;¥0,:..,¥r), we can consider it
as a time series generated by a hidden-filter hidden Markov model; see
Poritz [58]. In.the all-pole (that is, ‘auto-regressive, or linear predic-
tive) case, we associate with each state s an all-pole filter A, of de-
gree N, (A, = (an(s),...,ai(s)) and a positive gain-factor o,. When
state s is active, the next sample of the signal y; is generated by ap-
plying the filter A, to the most recent N samples of the signal and
adding a sample u; of N(0,0?) noise: y; = Zj:l,N a;(8)e-j + .
The Baum-Welch reestimates. are determined as follows: For any ¢ let

Vi = (Yt-N,-- -, Yt-1). Then for'any s € S, we have:
B T T -1
A =(Cnomn) (Sumion)
t=1 t=1;
T o S
32 =3 m(o)wilye = (Ve &)/ Y nls).
t=1 PR e g t=1

For models with no zero transitions, non-singularity of the N by N
signal covariance matrix, 3°,_, 1 V; ® Vi, assures invertibility of the
expected state covariance-matrices above. These models approximate
the behavior of a dynamic system (for example, a vocal tract, [58]
and Juang and Rabiner [39]) as a time-dependent, noisy articulation of

items drawn from a finite set of elementary steady state systems under
the control of a Markov' chain;

We may want to associate several output distributions with obser-
vations generated by what intuitively appears to be a single state (for
example, a spoken vowel can be stressed or unstressed, nasalized or
not, etc.). Instead of sampling a single output distribution per state,
during a visit to a state s we could first sample a finite mizture distri-
bution M, associated with the state. Thus we first choose an index i -
(with probability M,(4),s = 1,2,..., M(s)) and then produce output
according to a distribution b, ;(k) ‘dependent on both state and index.

This structure is known as a miztures hidden Markov model. Let
7:(s,1) be the posterior probability that state s is visited at time ¢ and
index i is selected; it can be computed from alphas and betas. The
Baum-Welch reestimate for the mixture distribution for state s is then

M) = Yo7,/ (o)
t t

for i=1,2,...,M(s). This formula is the obvious hidden Markov ana-
log of the formula given by Liporace in [47] for reestimating a single
mixture distribution. Richter [63] described a mixture hidden Markov
model (as an application of [47])-to handle speech data that is peaked
and ‘extended in comparison to a single Gaussian density. Each Richter
mixture is a homothetic set of multivariate Gaussians; that is, densities
with common means and covariance matrices that are scalar multiples
of one another. Applications of ‘these models are discussed in Bahl et
al [3]. Mixtures have been employed in a number of hidden Markov
studies, for instance in the hidden filter models described in [39].

9. Experimental Data Times-series obtained by data collection are
not actually generated by hidden Markov models. Theoretical justifi-
cation for maximum likelihood estimation (consistency of the estimate;
[21], [12]) is therefore removed.: Justification for use of the models rests
on their success in applications; they are tractable approximations to
a true model whose form is unknown. A number of studies have been
aimed at finding an alternate ‘criterion; to maximum likelihood in se-



lecting the parameters of the model: these include Mercer’s maximum
mutual-information [3], [53] and the work of Ephraim et el on minimum
cross-entropy [24] (see also [32], [68]). Ideas in related areas of infor-
mation geometry and alternating estimation that bear on this problem
include [22], [42], and [49]. Nédas [50}, [51], [52] discusses a number of
practical and theoretical issues on the question of model estimation.
Even assuming the truth of the hidden Markov assumption, many
practical considerations arise; we mention some of them here. During
the recovery of the hidden state sequence with a dynamic program it
is frequently sufficient to save the pointers for only a limited time back
from the current time; see Brown ef al[16]. To handle large state spaces
or to restrict the state sequences to respect additional constraints, there
are approximate methods; the use of a stack algorithm for example,
[72], [36], [4]. Scaling of computation is needed to avoid underflow
and overflow; see [46]. The quantity of data is often inadequate to
produce reliable estimates of the probability of rare events. Several
studies have addressed this sparse data question. The deleted interpo-
lation technique of Jelinek and Mercer is summarized in [4]. Katz [40]
smoothed probabilities based on Turing’s estimate. Levinson et al [46]
discussed reestimation with probabilities constrained away from zero.

Several useful points can be made regarding data preparation; see
Poritz and Richter [59]. Time series are frequently obtained from con-
tinuous waveforms. The series is mapped by projection into a sequence
of feature vectors. These projection operators include digital sampling,
PCM coding, vector quantization, band pass filtering, subpopulation
filtering and any other operators with less than full rank. In general,
such operators destroy information. In particular, experience shows
that a priori codebook quantization should be used with caution. If
enlarging the codebook improves performance, then hidden Markov
models based on continuous densities will frequently outperform models
based on finite alphabets. Carrying this to the extreme, only modeling
of the sampled waveform directly avoids unwarrented data manipula-
tion.

It is important to test the goodness of fit of a converged hidden
Markov model. A poor fit may sometimes be overcome. A one-to-
one non-linear transformation of continuous data may improve results
with Gaussian hidden Markov models (a linear map has no effect). The
logarithm applied to positive real observations, for example, often pulls
in offending outliers. A mixtures model may cope with multimodal or
skewed continuous data. Another choice of parametric distribution may
be called for. The number of states can be experimented with; the chi-
square theory is discussed in [12]. The time series dynamics may carry
Markov structure; improvement in performance has been obtained by
concatenating items from nearby times into a single jointly-distributed
poly-observation [59],[3].

Prior significance is often attached to individual states or collec-
tions of states in a hidden Markov model. Models constructed on la-
belled or scripted data are then tested on new data obtained from the
same or similar sources. By imposing “known” constraints, less is ex-
pected from the statistical estimation process in the hope of making it
easier to obtain a satisfactory model. This method has many proven
advantages; but it does have its drawbacks.

In fact, as was originally observed by Neuwirth, the opposite point
of view can be very revealing: a class of hidden Markov models whose
states embody no prior assumptions of meaning can be used as a tool
for the discovery of structure in a time series. An estimate of the
maximum likelihood model in the class is computed by the Baum-Welch
algorithm. The significance of the states is based on the parameters of
this model. A priorilabelling is replaced by probabilistic labelling. The
idea has been used to model text (Cave and Neuwirth [17]), phonetics
(Neuburg [54]) and speech (Poritz [58]). A variant discussed by Jelinek
in [38] combines deterministic and probabilitic labelling in a language
model. Results are frequently intuitively satisfying; that is, they agree
with prior conceptions. They also introduce statistically important
novel structure that is appreciated only after the fact.
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