
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

22

Maximum Likelihood and Clustering

Rather than enumerate all hypotheses – which may be exponential in number
– we can save a lot of time by homing in on one good hypothesis that fits
the data well. This is the philosophy behind the maximum likelihood method,
which identifies the setting of the parameter vector θ that maximizes the
likelihood, P (Data |θ,H).

For some models the maximum likelihood parameters can be identified
instantly from the data; for more complex models, finding the maximum like-
lihood parameters may require an iterative algorithm.

For any model, it is usually easiest to work with the logarithm of the
likelihood rather than the likelihood, since likelihoods, being products of the
probabilities of many data points, tend to be very small. Likelihoods multiply;
log likelihoods add.

�
22.1 Maximum likelihood for one Gaussian

We return to the Gaussian for our first examples. Assume we have data
{xn}N

n=1. The log likelihood is:

lnP ({xn}N
n=1 |µ, σ) = −N ln(

√
2πσ) −

∑

n

(xn − µ)2/(2σ2). (22.1)

The likelihood can be expressed in terms of two functions of the data, the
sample mean

x̄ ≡
N
∑

n=1

xn/N, (22.2)

and the sum of square deviations

S ≡
∑

n

(xn − x̄)2 : (22.3)

lnP ({xn}N
n=1 |µ, σ) = −N ln(

√
2πσ) − [N(µ − x̄)2 + S]/(2σ2). (22.4)

Because the likelihood depends on the data only through x̄ and S, these two
quantities are known as sufficient statistics.

Example 22.1. Differentiate the log likelihood with respect to µ and show that,
if the standard deviation is known to be σ, the maximum likelihood mean
µ of a Gaussian is equal to the sample mean x̄, for any value of σ.

Solution.

∂

∂µ
lnP = −N(µ − x̄)

σ2
(22.5)

= 0 when µ = x̄. 2 (22.6)
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Figure 22.1. The likelihood
function for the parameters of a
Gaussian distribution.
(a1, a2) Surface plot and contour
plot of the log likelihood as a
function of µ and σ. The data set
of N = 5 points had mean x̄ = 1.0
and S2 =

∑

(x − x̄)2 = 1.0.
(b) The posterior probability of µ
for various values of σ.
(c) The posterior probability of σ
for various fixed values of µ.

If we Taylor-expand the log likelihood about the maximum, we can de-
fine approximate error bars on the maximum likelihood parameter: we use
a quadratic approximation to estimate how far from the maximum-likelihood
parameter setting we can go before the likelihood falls by some standard fac-
tor, for example e1/2, or e4/2. In the special case of a likelihood that is a
Gaussian function of the parameters, the quadratic approximation is exact.

Example 22.2. Find the second derivative of the log likelihood with respect to
µ, and find the error bars on µ, given the data and σ.

Solution.
∂2

∂µ2
lnP = −N

σ2
. 2 (22.7)

Comparing this curvature with the curvature of the log of a Gaussian distri-
bution over µ of standard deviation σµ, exp(−µ2/(2σ2

µ)), which is 1/σ2
µ, we

can deduce that the error bars on µ (derived from the likelihood function) are

σµ =
σ√
N

. (22.8)

The error bars have this property: at the two points µ = x̄±σµ, the likelihood
is smaller than its maximum value by a factor of e1/2.

Example 22.3. Find the maximum likelihood standard deviation σ of a Gaus-
sian, whose mean is known to be µ, in the light of data {xn}N

n=1. Find
the second derivative of the log likelihood with respect to lnσ, and error
bars on lnσ.

Solution. The likelihood’s dependence on σ is

lnP ({xn}N
n=1 |µ, σ) = −N ln(

√
2πσ) − Stot

(2σ2)
, (22.9)

where Stot =
∑

n(xn − µ)2. To find the maximum of the likelihood, we can
differentiate with respect to lnσ. [It’s often most hygienic to differentiate with
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304 22 — Maximum Likelihood and Clustering

respect to lnu rather than u, when u is a scale variable; we use dun/d(ln u) =
nun.]

∂ lnP ({xn}N
n=1 |µ, σ)

∂ lnσ
= −N +

Stot

σ2
(22.10)

This derivative is zero when

σ2 =
Stot

N
, (22.11)

i.e.,

σ =

√

∑N
n=1(xn − µ)2

N
. (22.12)

The second derivative is

∂2 lnP ({xn}N
n=1 |µ, σ)

∂(ln σ)2
= −2

Stot

σ2
, (22.13)

and at the maximum-likelihood value of σ2, this equals −2N . So error bars
on lnσ are

σlnσ =
1√
2N

. 2 (22.14)

. Exercise 22.4.[1 ] Show that the values of µ and lnσ that jointly maximize the

likelihood are: {µ, σ}ML =
{

x̄, σN =
√

S/N
}

, where

σN ≡

√

∑N
n=1(xn − x̄)2

N
. (22.15)

�
22.2 Maximum likelihood for a mixture of Gaussians

We now derive an algorithm for fitting a mixture of Gaussians to one-
dimensional data. In fact, this algorithm is so important to understand that,
you, gentle reader, get to derive the algorithm. Please work through the fol-
lowing exercise.

Exercise 22.5.[2, p.312] A random variable x is assumed to have a probability
distribution that is a mixture of two Gaussians,

P (x |µ1, µ2, σ) =

[

2
∑

k=1

pk
1√

2πσ2
exp

(

−(x − µk)
2

2σ2

)

]

, (22.16)

where the two Gaussians are given the labels k = 1 and k = 2; the prior
probability of the class label k is {p1 = 1/2, p2 = 1/2}; {µk} are the means
of the two Gaussians; and both have standard deviation σ. For brevity, we
denote these parameters by θ ≡ {{µk}, σ}.

A data set consists of N points {xn}N
n=1 which are assumed to be indepen-

dent samples from this distribution. Let kn denote the unknown class label of
the nth point.

Assuming that {µk} and σ are known, show that the posterior probability
of the class label kn of the nth point can be written as

P (kn =1 |xn,θ) =
1

1 + exp[−(w1xn + w0)]

P (kn =2 |xn,θ) =
1

1 + exp[+(w1xn + w0)]
,

(22.17)
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and give expressions for w1 and w0.

Assume now that the means {µk} are not known, and that we wish to
infer them from the data {xn}N

n=1. (The standard deviation σ is known.) In
the remainder of this question we will derive an iterative algorithm for finding
values for {µk} that maximize the likelihood,

P ({xn}N
n=1 | {µk}, σ) =

∏

n

P (xn | {µk}, σ). (22.18)

Let L denote the log of the likelihood. Show that the derivative of the log
likelihood with respect to µk is given by

∂

∂µk
L =

∑

n

pk|n
(xn − µk)

σ2
, (22.19)

where pk|n ≡ P (kn =k |xn,θ) appeared above at equation (22.17).

Show, neglecting terms in ∂
∂µk

P (kn =k |xn,θ), that the second derivative
is approximately given by

∂2

∂µ2
k

L = −
∑

n

pk|n
1

σ2
. (22.20)

Hence show that from an initial state µ1, µ2, an approximate Newton–Raphson
step updates these parameters to µ′

1, µ
′
2, where

µ′
k =

∑

n pk|nxn
∑

n pk|n
. (22.21)

[The Newton–Raphson method for maximizing L(µ) updates µ to µ′ = µ −
[

∂L
∂µ

/

∂2L
∂µ2

]

.]

0 1 2 3 4 5 6

Assuming that σ = 1, sketch a contour plot of the likelihood function L as a
function of µ1 and µ2 for the data set shown above. The data set consists of
32 points. Describe the peaks in your sketch and indicate their widths.

Notice that the algorithm you have derived for maximizing the likelihood
is identical to the soft K-means algorithm of section 20.4. Now that it is clear
that clustering can be viewed as mixture-density-modelling, we are able to
derive enhancements to the K-means algorithm, which rectify the problems
we noted earlier.

�
22.3 Enhancements to soft K-means

Algorithm 22.2 shows a version of the soft-K-means algorithm corresponding
to a modelling assumption that each cluster is a spherical Gaussian having its
own width (each cluster has its own β(k) = 1/ σ2

k). The algorithm updates the
lengthscales σk for itself. The algorithm also includes cluster weight parame-
ters π1, π2, . . . , πK which also update themselves, allowing accurate modelling
of data from clusters of unequal weights. This algorithm is demonstrated in
figure 22.3 for two data sets that we’ve seen before. The second example shows
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306 22 — Maximum Likelihood and Clustering

Assignment step. The responsibilities are

r
(n)
k =

πk
1

(
√

2πσk)I
exp

(

− 1

σ2
k

d(m(k),x(n))

)

∑

k′ πk
1

(
√

2πσ
k′

)I
exp

(

− 1

σ2
k′

d(m(k′),x(n))

) (22.22)

where I is the dimensionality of x.

Update step. Each cluster’s parameters, m(k), πk, and σ2
k, are adjusted

to match the data points that it is responsible for.

m(k) =

∑

n

r
(n)
k x(n)

R(k)
(22.23)

σ2
k =

∑

n

r
(n)
k (x(n) −m(k))2

IR(k)
(22.24)

πk =
R(k)

∑

k R(k)
(22.25)

where R(k) is the total responsibility of mean k,

R(k) =
∑

n

r
(n)
k . (22.26)

Algorithm 22.2. The soft K-means
algorithm, version 2.

t = 0 t = 1 t = 2 t = 3 t = 9

t = 0 t = 1 t = 10 t = 20 t = 30 t = 35

Figure 22.3. Soft K-means
algorithm, with K = 2, applied
(a) to the 40-point data set of
figure 20.3; (b) to the little ’n’
large data set of figure 20.5.

r
(n)
k =

πk
1

∏I
i=1

√
2πσ

(k)
i

exp

(

−
I
∑

i=1

(m
(k)
i − x

(n)
i )2

/

2(σ
(k)
i )2

)

∑

k′ (numerator, with k′ in place of k)
(22.27)

σ2
i
(k)

=

∑

n

r
(n)
k (x

(n)
i − m

(k)
i )2

R(k)
(22.28)

Algorithm 22.4. The soft K-means
algorithm, version 3, which
corresponds to a model of
axis-aligned Gaussians.
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t = 0 t = 10 t = 20 t = 30 Figure 22.5. Soft K-means
algorithm, version 3, applied to
the data consisting of two
cigar-shaped clusters. K = 2 (c.f.
figure 20.6).

t = 0 t = 10 t = 20 t = 26 t = 32 Figure 22.6. Soft K-means
algorithm, version 3, applied to
the little ’n’ large data set. K = 2.

that convergence can take a long time, but eventually the algorithm identifies
the small cluster and the large cluster.

Soft K-means, version 2, is a maximum-likelihood algorithm for fitting a
mixture of spherical Gaussians to data – ‘spherical’ meaning that the variance A proof that the algorithm does

indeed maximize the likelihood is
deferred to section 33.7.

of the Gaussian is the same in all directions. This algorithm is still no good
at modelling the cigar-shaped clusters of figure 20.6. If we wish to model the
clusters by axis-aligned Gaussians with possibly-unequal variances, we replace
the assignment rule (22.22) and the variance update rule (22.24) by the rules
(22.27) and (22.28) displayed in algorithm 22.4.

This third version of soft K-means is demonstrated in figure 22.5 on the
‘two cigars’ data set of figure 20.6. After 30 iterations, the algorithm has
correctly located the two clusters. Figure 22.6 shows the same algorithm
applied to the little ’n’ large data set, where, again, the correct cluster locations
are found.

�
22.4 A fatal flaw of maximum likelihood

Finally, figure 22.7 sounds a cautionary note: when we fit K = 4 means to our
first toy data set, we sometimes find that very small clusters form, covering
just one or two data points. This is a pathological property of soft K-means
clustering, versions 2 and 3.

. Exercise 22.6.[2 ] Investigate what happens if one mean m(k) sits exactly on
top of one data point; show that if the variance σ2

k is sufficiently small,

t = 0 t = 5 t = 10 t = 20 Figure 22.7. Soft K means
algorithm applied to a data set of
40 points. K = 4. Notice that at
convergence, one very small
cluster has formed between two
data points.



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

308 22 — Maximum Likelihood and Clustering

then no return is possible: σ2
k becomes ever smaller.

KABOOM!

Soft K-means can blow up. Put one cluster exactly on one data point and let its
variance go to zero – you can obtain an arbitrarily large likelihood! Maximum
likelihood methods can break down by finding highly tuned models that fit part
of the data perfectly. This phenomenon is known as overfitting. The reason
we are not interested in these solutions with enormous likelihood is this: sure,
these parameter-settings may have enormous posterior probability density ,
but the density is large over only a very small volume of parameter space. So
the probability mass associated with these likelihood spikes is usually tiny.

We conclude that maximum likelihood methods are not a satisfactory gen-
eral solution to data modelling problems: the likelihood may be infinitely large
at certain parameter settings. Even if the likelihood does not have infinitely-
large spikes, the maximum of the likelihood is often unrepresentative, in high-
dimensional problems.

Even in low-dimensional problems, maximum likelihood solutions can be
unrepresentative. As you may know from basic statistics, the maximum like-
lihood estimator (22.15) for a Gaussian’s standard deviation, σN , is a biased
estimator, a topic that we’ll take up in Chapter 24.

The maximum a posteriori (MAP) method

A popular replacement for maximizing the likelihood is maximizing the
Bayesian posterior probability density of the parameters instead. However,
multiplying the likelihood by a prior and maximizing the posterior does
not make the above problems go away; the posterior density often also has
infinitely-large spikes, and the maximum of the posterior probability density
is often unrepresentative of the whole posterior distribution. Think back to
the concept of typicality, which we encountered in Chapter 4: in high dimen-
sions, most of the probability mass is in a typical set whose properties are
quite different from the points that have the maximum probability density.
Maxima are atypical.

A further reason for disliking the maximum a posteriori is that it is basis-
dependent. If we make a nonlinear change of basis from the parameter θ to
the parameter u = f(θ) then the probability density of θ is transformed to

P (u) = P (θ)

∣

∣

∣

∣

∂θ

∂u

∣

∣

∣

∣

. (22.29)

The maximum of the density P (u) will usually not coincide with the maximum
of the density P (θ). (For figures illustrating such nonlinear changes of basis,
see the next chapter.) It seems undesirable to use a method whose answers
change when we change representation.

Further reading

The soft K-means algorithm is at the heart of the automatic classification
package, AutoClass (Hanson et al., 1991b; Hanson et al., 1991a).
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�
22.5 Further exercises

Exercises where maximum likelihood may be useful

Exercise 22.7.[3 ] Make a version of the K-means algorithm that models the
data as a mixture of K arbitrary Gaussians, i.e., Gaussians that are not
constrained to be axis-aligned.

. Exercise 22.8.[2 ] (a) A photon counter is pointed at a remote star for one
minute, in order to infer the brightness, i.e., the rate of photons
arriving at the counter per minute, λ. Assuming the number of
photons collected r has a Poisson distribution with mean λ,

P (r |λ) = exp(−λ)
λr

r!
, (22.30)

what is the maximum likelihood estimate for λ, given r = 9? Find
error bars on lnλ.

(b) Same situation, but now we assume that the counter detects not
only photons from the star but also ‘background’ photons. The
background rate of photons is known to be b=13 photons per
minute. We assume the number of photons collected, r, has a Pois-
son distribution with mean λ+b. Now, given r =9 detected photons,
what is the maximum likelihood estimate for λ? Comment on this
answer, discussing also the Bayesian posterior distribution, and the
‘unbiased estimator’ of sampling theory, λ̂ ≡ r − b.

Exercise 22.9.[2 ] A bent coin is tossed N times, giving Na heads and Nb tails.
Assume a beta distribution prior for the probability of heads, p, for
example the uniform distribution. Find the maximum likelihood and
maximum a posteriori values of p, then find the maximum likelihood
and maximum a posteriori values of the logit a ≡ ln[p/(1−p)]. Compare
with the predictive distribution, i.e., the probability that the next toss
will come up heads.

. Exercise 22.10.[2 ] Two men looked through prison bars; one saw stars, the
other tried to infer where the window frame was.

(xmin, ymin)

(xmax, ymax)

?

?

?

?
?

?

From the other side of a room, you look through a window and see
stars at locations {(xn, yn)}. You can’t see the window edges because
it is totally dark apart from the stars. Assuming the window is rectan-
gular and that the visible stars’s locations are independently randomly
distributed, what are the inferred values of (xmin, ymin, xmax, ymax), ac-
cording to maximum likelihood? Sketch the likelihood as a function of
xmax, for fixed xmin, ymin, and ymax.

. Exercise 22.11.[3 ] A sailor infers his location (x, y) by measuring the bearings

b

b

b

�
�

�
�

�
�

��

(x1, y1)
A

A
A

A
A

A
A

A
A

(x2, y2)

Q
Q

Q
Q

QQ

(x3, y3)

Figure 22.8. The standard way of
drawing three slightly inconsistent
bearings on a chart produces a
triangle called a cocked hat.
Where is the sailor?

of three buoys whose locations (xn, yn) are given on his chart. Let the
true bearings of the buoys be θn. Assuming that his measurement θ̃n of
each bearing is subject to Gaussian noise of small standard deviation σ,
what is his inferred location, by maximum likelihood?

The sailor’s rule of thumb says that the boat’s position can be taken to
be the centre of the cocked hat, the triangle produced by the intersection
of the three measured bearings (figure 22.8). Can you persuade him that
the maximum likelihood answer is better?
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. Exercise 22.12.[3, p.312] Maximum likelihood fitting of an exponential-family
model.

Assume that a variable x comes from a probability distribution of the
form

P (x |w) =
1

Z(w)
exp

(

∑

k

wkfk(x)

)

, (22.31)

where the functions fk(x) are given, and the parameters w = {wk} are
not known. A data set {x(n)} of N points is supplied.

Show by differentiating the log likelihood that the maximum-likelihood
parameters wML satisfy

∑

x

P (x |wML)fk(x) =
1

N

∑

n

fk(x
(n)), (22.32)

where the left-hand sum is over all x, and the right-hand sum is over the
data points. A shorthand for this result is that each function-average
under the fitted model must equal the function-average found in the
data:

〈fk〉P (x |wML) = 〈fk〉Data . (22.33)

. Exercise 22.13.[3 ] ‘Maximum entropy’ fitting of models to constraints.

When confronted by a probability distribution P (x) about which only a
few facts are known, the maximum entropy principle (maxent) offers a
rule for choosing a distribution that satisfies those constraints. Accord-
ing to maxent, you should select the P (x) that maximizes the entropy

H =
∑

x

P (x) log 1/P (x), (22.34)

subject to the constraints. Assuming the constraints assert that the
averages of certain functions fk(x) are known, i.e.,

〈fk〉P (x) = Fk, (22.35)

show, by introducing Lagrange multipliers (one for each constraint, in-
cluding normalization), that the maximum-entropy distribution has the
form

P (x)Maxent =
1

Z
exp

(

∑

k

wkfk(x)

)

, (22.36)

where the parameters Z and {wk} are set such that the constraints
(22.35) are satisfied.

And hence the maximum entropy method gives identical results to max-
imum likelihood fitting of an exponential-family model (previous exer-
cise).

The maximum entropy method has sometimes been recommended as a
method for assigning prior distributions in Bayesian modelling. While
the outcomes of the maximum entropy method are sometimes interesting
and thought-provoking, I do not advocate maxent as the approach to
assigning priors.

Maximum entropy is also sometimes proposed as a method for solv-
ing inference problems – for example, ‘given that the mean score of
this unfair six-sided die is 2.5, what is its probability distribution
(p1, p2, p3, p4, p5, p6)?’ I think it is a bad idea to use maximum entropy in
this way; it can give very silly answers. The correct way to solve inference
problems is to use Bayes’ theorem.



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

22.5: Further exercises 311

Exercises where maximum likelihood and MAP have difficulties

. Exercise 22.14.[2 ] This exercise explores the idea that maximizing a proba-
bility density is a poor way to find a point that is representative of
the density. Consider a Gaussian distribution in a k-dimensional space,
P (w) = (1/

√
2π σW )k exp(−

∑k
1 w2

i /2σ
2
W

). Show that nearly all of the
probability mass of a Gaussian is in a thin shell of radius r =

√
kσW

and of thickness proportional to r/
√

k. For example, in 1000 dimen-
sions, 90% of the mass of a Gaussian with σW = 1 is in a shell of radius
31.6 and thickness 2.8. However, the probability density at the origin is
ek/2 ' 10217 times bigger than the density at this shell where most of
the probability mass is.

Now consider two Gaussian densities in 1000 dimensions that differ in
radius σW by just 1%, and that contain equal total probability mass.
Show that the maximum probability density is greater at the centre of
the Gaussian with smaller σW by a factor of ∼exp(0.01k) ' 20 000.

In ill-posed problems, a typical posterior distribution is often a weighted
superposition of Gaussians with varying means and standard deviations,
so the true posterior has a skew peak, with the maximum of the prob-
ability density located near the mean of the Gaussian distribution that
has the smallest standard deviation, not the Gaussian with the greatest
weight.

. Exercise 22.15.[3 ] The seven scientists. N datapoints {xn} are drawn from
N distributions, all of which are Gaussian with a common mean µ but
with different unknown standard deviations σn. What are the maximum
likelihood parameters µ, {σn} given the data? For example, seven

-30 -20 -10 0 10 20

A B C D-G

Scientist xn

A −27.020
B 3.570
C 8.191
D 9.898
E 9.603
F 9.945
G 10.056

Figure 22.9. Seven measurements
{xn} of a parameter µ by seven
scientists each having his own
noise-level σn.

scientists (A, B, C, D, E, F, G) with wildly-differing experimental skills
measure µ. You expect some of them to do accurate work (i.e., to have
small σn), and some of them to turn in wildly inaccurate answers (i.e.,
to have enormous σn). Figure 22.9 shows their seven results. What is
µ, and how reliable is each scientist?

I hope you agree that, intuitively, it looks pretty certain that A and B
are both inept measurers, that D–G are better, and that the true value
of µ is somewhere close to 10. But what does maximizing the likelihood
tell you?

Exercise 22.16.[3 ] Problems with MAP method. A collection of widgets i =
1 . . . k have a property called ‘wodge’, wi, which we measure, widget by
widget, in noisy experiments with a known noise level σν =1.0. Our
model for these quantities is that they come from a Gaussian prior
P (wi |α) = Normal(0, 1/α), where α=1/σ2

W
is not known. Our prior

for this variance is flat over log σW from σW = 0.1 to σW = 10.

Scenario 1. Suppose four widgets have been measured and give the fol-
lowing data: {d1, d2, d3, d4} = {2.2, −2.2, 2.8, −2.8}. We are interested
in inferring the wodges of these four widgets.

(a) Find the values of w and α that maximize the posterior probability
P (w, log α |d).

(b) Marginalize over α and find the posterior probability density of w

given the data. [Integration skills required. See MacKay (1999a) for
solution.] Find maxima of P (w |d). [Answer: two maxima – one at
wMP = {1.8,−1.8, 2.2,−2.2}, with error bars on all four parameters
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(obtained from Gaussian approximation to the posterior) ±0.9; and
one at w′

MP
= {0.03,−0.03, 0.04,−0.04} with error bars ±0.1.]

Scenario 2. Suppose in addition to the four measurements above we are
now informed that there are four more widgets that have been measured
with a much less accurate instrument, having σ ′

ν =100.0. Thus we now
have both well-determined and ill-determined parameters, as in a typical
ill-posed problem. The data from these measurements were a string of
uninformative values, {d5, d6, d7, d8} = {100, −100, 100, −100}.
We are again asked to infer the wodges of the widgets. Intuitively, our
inferences about the well-measured widgets should be negligibly affected
by this vacuous information about the poorly-measured widgets. But
what happens to the MAP method?

(a) Find the values of w and α that maximize the posterior probability
P (w, log α |d).

(b) Find maxima of P (w |d). [Answer: only one maximum, wMP =
{0.03, −0.03, 0.03, −0.03, 0.0001, −0.0001, 0.0001, −0.0001}, with
error bars on all eight parameters ±0.11.]

�
22.6 Solutions

Solution to exercise 22.5 (p.304). Figure 22.10 shows a contour plot of the
0 1 2 3 54

0

1

2

3

5

4

Figure 22.10. The likelihood as a
function of µ1 and µ2.

likelihood function for the 32 data points. The peaks are pretty-near centred
on the points (1, 5) and (5, 1), and are pretty-near circular in their contours.
The width of each of the peaks is a standard deviation of σ/

√
16 = 1/4. The

peaks are roughly Gaussian in shape.

Solution to exercise 22.12 (p.310). The log likelihood is:

lnP ({x(n)} |w) = −N lnZ(w) +
∑

n

∑

k

wkfk(x
(n)). (22.37)

∂

∂wk
lnP ({x(n)} |w) = −N

∂

∂wk
lnZ(w) +

∑

n

fk(x). (22.38)

Now, the fun part is what happens when we differentiate the log of the nor-
malizing constant:

∂

∂wk
lnZ(w) =

1

Z(w)

∑

x

∂

∂wk
exp

(

∑

k′

wk′fk′(x)

)

=
1

Z(w)

∑

x

exp

(

∑

k′

wk′fk′(x)

)

fk(x) =
∑

x

P (x |w)fk(x), (22.39)

so

∂

∂wk
lnP ({x(n)} |w) = −N

∑

x

P (x |w)fk(x) +
∑

n

fk(x), (22.40)

and at the maximum of the likelihood,

∑

x

P (x |wML)fk(x) =
1

N

∑

n

fk(x
(n)). (22.41)
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23

Useful Probability Distributions
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Figure 23.1. The binomial
distribution P (r | f = 0.3, N =10),
on a linear scale (top) and a
logarithmic scale (bottom).

In Bayesian data modelling, there’s a small collection of probability distribu-
tions that come up again and again. The purpose of this chapter is to intro-
duce these distributions so that they won’t be intimidating when encountered
in combat situations.

There is no need to memorize any of them, except perhaps the Gaussian;
if a distribution is important enough, it will memorize itself, and otherwise, it
can easily be looked up.

�
23.1 Distributions over integers

Binomial, Poisson, exponential

We already encountered the binomial distribution and the Poisson distribution
on page 2.

The binomial distribution for an integer r with parameters f (the bias,
f ∈ [0, 1]) and N (the number of trials) is:

P (r | f,N) =

(

N

r

)

f r(1 − f)N−r r ∈ {0, 1, 2, . . . , N}. (23.1)

The binomial distribution arises, for example, when we flip a bent coin,
with bias f , N times, and observe the number of heads, r.

The Poisson distribution with parameter λ > 0 is:

P (r |λ) = e−λ λr

r!
r ∈ {0, 1, 2, . . .}. (23.2)

The Poisson distribution arises, for example, when we count the number of
photons r that arrive in a pixel during a fixed interval, given that the mean
intensity on the pixel corresponds to an average number of photons λ.
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r

Figure 23.2. The Poisson
distribution P (r |λ =2.7), on a
linear scale (top) and a
logarithmic scale (bottom).

The exponential distribution on integers,,

P (r | f) = f r(1 − f) r ∈ (0, 1, 2, . . . ,∞), (23.3)

arises in waiting problems. How long will you have to wait until a six is rolled,
if a fair six-sided dice is rolled? Answer: the probability distribution of the
number of rolls, r, is exponential over integers with parameter f = 5/6. The
distribution may also be written

P (r | f) = (1 − f) e−λr r ∈ (0, 1, 2, . . . ,∞), (23.4)

where λ = log(1/f).

313
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�
23.2 Distributions over unbounded real numbers

Gaussian, Student, Cauchy, biexponential, inverse-cosh.
The Gaussian distribution or normal distribution with mean µ and standard
deviation σ is

P (x |µ, σ) =
1

Z
exp

(

−(x − µ)2

2σ2

)

x ∈ (−∞,∞), (23.5)

where

Z =
√

2πσ2. (23.6)

It is sometimes useful to work with the quantity τ ≡ 1/σ2, which is called the
precision parameter of the Gaussian.

A sample z from a standard univariate Gaussian can be generated by
computing

z = cos(2πu1)
√

2 ln(1/u2), (23.7)

where u1 and u2 are uniformly distributed in (0, 1). A second sample z2 =
sin(2πu1)

√

2 ln(1/u2), independent of the first, can then be obtained for free.
The Gaussian distribution is widely used and often asserted to be a very

common distribution in the real world, but I am sceptical about this asser-
tion. Yes, unimodal distributions may be common; but a Gaussian is a spe-
cial, rather extreme, unimodal distribution. It has very light tails: the log-
probability-density decreases quadratically. The typical deviation of x from µ
is σ, but the respective probabilities that x deviates from µ by more than 2σ,
3σ, 4σ, and 5σ, are 0.046, 0.003, 6 × 10−5, and 6 × 10−7. In my experience,
deviations from a mean four or five times greater than the typical deviation
may be rare, but not as rare as 6×10−5! I therefore urge caution in the use of
Gaussian distributions: if a variable that is modelled with a Gaussian actually
has a heavier-tailed distribution, the rest of the model will contort itself to
reduce the deviations of the outliers, like a sheet of paper being crushed by a
rubber band.

. Exercise 23.1.[1 ] Pick a variable that is supposedly bell-shaped in probability
distribution, gather data, and make a plot of the variable’s empirical
distribution. Show the distribution as a histogram on a log scale and
investigate whether the tails are well-modelled by a Gaussian distribu-
tion. [One example of a variable to study is the amplitude of an audio
signal.]

One distribution with heavier tails than a Gaussian is a mixture of Gaus-

sians. A mixture of two Gaussians, for example, is defined by two means,
two standard deviations, and two mixing coefficients π1 and π2, satisfying
π1 + π2 = 1, πi ≥ 0.

P (x |µ1, σ1, π1, µ2, σ2, π2) =
π1√
2πσ1

exp
(

− (x−µ1)2

2σ2

1

)

+
π2√
2πσ2

exp
(

− (x−µ2)2

2σ2

2

)

.

If we take an appropriately weighted mixture of an infinite number of
Gaussians, all having mean µ, we obtain a Student-t distribution,

P (x |µ, s, n) =
1

Z

1

(1 + (x − µ)2/(ns2))(n+1)/2
, (23.8)

where
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Figure 23.3. Three unimodal
distributions. Two Student
distributions, with parameters
(m, s) = (1, 1) (heavy line) (a
Cauchy distribution) and (2, 4)
(light line), and a Gaussian
distribution with mean µ = 3 and
standard deviation σ = 3 (dashed
line), shown on linear vertical
scales (top) and logarithmic
vertical scales (bottom). Notice
that the heavy tails of the Cauchy
distribution are scarcely evident
in the upper ‘bell-shaped curve’.

Z =
√

πns2
Γ(n/2)

Γ((n + 1)/2)
(23.9)
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and n is called the number of degrees of freedom and Γ is the gamma function.
If n > 1 then the Student distribution (23.8) has a mean and that mean is
µ. If n > 2 the distribution also has a finite variance, σ2 = ns2/(n − 2).
As n → ∞, the Student distribution approaches the normal distribution with
mean µ and standard deviation s. The Student distribution arises both in
classical statistics (as the sampling-theoretic distribution of certain statistics)
and in Bayesian inference (as the probability distribution of a variable coming
from a Gaussian distribution whose standard deviation we aren’t sure of).

In the special case n = 1, the Student distribution is called the Cauchy

distribution.

A distribution whose tails are intermediate in heaviness between Student
and Gaussian is the biexponential distribution,

P (x |µ, s) =
1

Z
exp

(

−|x − µ|
s

)

x ∈ (−∞,∞) (23.10)

where
Z = 2s. (23.11)

The inverse-cosh distribution

P (x |β) ∝ 1

[cosh(βx)]1/β
(23.12)

is a popular model in independent component analysis. In the limit of large β,
the probability distribution P (x |β) becomes a biexponential distribution. In
the limit β → 0 P (x |β) approaches a Gaussian with mean zero and variance
1/β.

�
23.3 Distributions over positive real numbers

Exponential, gamma, inverse-gamma, and log-normal.
The exponential distribution,

P (x | s) =
1

Z
exp

(

−x

s

)

x ∈ (0,∞), (23.13)

where
Z = s, (23.14)

arises in waiting problems. How long will you have to wait for a bus in Pois-
sonville, given that buses arrive independently at random with one every s
minutes on average? Answer: the probability distribution of your wait, x, is
exponential with mean s.

The gamma distribution is like a Gaussian distribution, except whereas the
Gaussian goes from −∞ to ∞, gamma distributions go from 0 to ∞. Just as
the Gaussian distribution has two parameters µ and σ which control the mean
and width of the distribution, the gamma distribution has two parameters. It
is the product of the one-parameter exponential distribution (23.13) with a
polynomial, xc−1. The exponent c in the polynomial is the second parameter.

P (x | s, c) = Γ(x; s, c) =
1

Z

(x

s

)c−1
exp

(

−x

s

)

, 0 ≤ x < ∞ (23.15)

where
Z = Γ(c)s. (23.16)
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Figure 23.4. Two gamma
distributions, with parameters
(s, c) = (1, 3) (heavy lines) and
10, 0.3 (light lines), shown on
linear vertical scales (top) and
logarithmic vertical scales
(bottom); and shown as a
function of x on the left (23.15)
and l = log x on the right (23.18).

This is a simple peaked distribution with mean sc and variance s2c.

It is often natural to represent a positive real variable x in terms of its
logarithm l = log x. The probability density of l is

P (l) = P (x(l))

∣

∣

∣

∣

∂x

∂l

∣

∣

∣

∣

= P (x(l))x(l) (23.17)

=
1

Zl

(

x(l)

s

)c

exp

(

−x(l)

s

)

, (23.18)

where

Zl = Γ(c). (23.19)

[The gamma distribution is named after its normalizing constant – an odd
convention, it seems to me!]

Figure 23.4 shows a couple of gamma distributions as a function of x and
of l. Notice that where the original gamma distribution (23.15) may have a
‘spike’ at x = 0, the distribution over l never has such a spike. The spike is
an artefact of a bad choice of basis.

In the limit sc = 1, c → 0, we obtain the noninformative prior for a scale
parameter, the 1/x prior. This improper prior is called noninformative because
it has no associated length scale, no characteristic value of x, so it prefers all
values of x equally. It is invariant under the reparameterization x = mx. If
we transform the 1/x probability density into a density over l = log x we find
the latter density is uniform.

. Exercise 23.2.[1 ] Imagine that we reparameterize a positive variable x in terms
of its cube root, u = x1/3. If the probability density of x is the improper
distribution 1/x, what is the probability density of u?

The gamma distribution is always a unimodal density over l = log x, and,
as can be seen in the figures, it is asymmetric. If x has a gamma distribution,
and we decide to work in terms of the inverse of x, v = 1/x, we obtain a new
distribution, in which the density over l is flipped left-for-right: the probability
density of v is called an inverse-gamma distribution,

P (v | s, c) =
1

Zv

(

1

sv

)c+1

exp

(

− 1

sv

)

, 0 ≤ v < ∞ (23.20)

where

Zv = Γ(c)/s. (23.21)
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Figure 23.5. Two inverse gamma
distributions, with parameters
(s, c) = (1, 3) (heavy lines) and
10, 0.3 (light lines), shown on
linear vertical scales (top) and
logarithmic vertical scales
(bottom); and shown as a
function of x on the left and
l = log x on the right.

Gamma and inverse gamma distributions crop up in many inference prob-
lems in which a positive quantity is inferred from data. Examples include
inferring the variance of Gaussian noise from some noise samples, and infer-
ring the rate parameter of a Poisson distribution from the count.

Gamma distributions also arise naturally in the distributions of waiting
times between Poisson-distributed events. Given a Poisson process with rate
λ, the probability density of the arrival time x of the mth event is

λ(λx)m−1

(m−1)!
e−λx. (23.22)

Log-normal distribution

Another distribution over a positive real number x is the log-normal distribu-
tion, which is the distribution that results when l = lnx has a normal distri-
bution. We define m to be the median value of x, and s to be the standard
deviation of lnx.

P (l |m, s) =
1

Z
exp

(

−(l − lnm)2

2s2

)

l ∈ (−∞,∞), (23.23)

where

Z =
√

2πs2, (23.24)

implies

P (x |m, s) =
1

x
exp

(

−(lnx − lnm)2

2s2

)

x ∈ (0,∞). (23.25)
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Figure 23.6. Two log-normal
distributions, with parameters
(m, s) = (3, 1.8) (heavy line) and
(3, 0.7) (light line), shown on
linear vertical scales (top) and
logarithmic vertical scales
(bottom). [Yes, they really do
have the same value of the
median, m = 3.]

�
23.4 Distributions over periodic variables

A periodic variable θ is a real number ∈ [0, 2π] having the property that θ = 0
and θ = 2π are equivalent.

A distribution that plays for periodic variables the role played by the Gaus-
sian distribution for real variables is the Von Mises distribution:

P (θ |µ, β) =
1

Z
exp (β cos(θ − µ)) θ ∈ (0, 2π). (23.26)

The normalizing constant is Z = 2πI0(β), where I0(x) is a modified Bessel
function.
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A distribution that arises from Brownian diffusion around the circle is the
wrapped Gaussian distribution,

P (θ |µ, σ) =
∞
∑

n=−∞
Normal(θ; (µ + 2πn), σ) θ ∈ (0, 2π). (23.27)

�
23.5 Distributions over probabilities

Beta distribution, Dirichlet distribution, entropic distribution
The beta distribution is a probability density over a variable p that is a prob-
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Figure 23.7. Three beta
distributions, with
(u1, u2) = (0.3, 1), (1.3, 1), and
(12, 2). The upper figure shows
P (p |u1, u2) as a function of p; the
lower shows the corresponding
density over the logit,

ln
p

1 − p
.

Notice how well-behaved the
densities are as a function of the
logit.

ability, p ∈ (0, 1):

P (p |u1, u2) =
1

Z(u1, u2)
pu1−1(1 − p)u2−1. (23.28)

The parameters u1, u2 may take any positive value. The normalizing constant
is the beta function.

Z(u1, u2) =
Γ(u1)Γ(u2)

Γ(u1 + u2)
(23.29)

Special cases include the uniform distribution – u1 =1, u2 =1; the Jeffreys
prior – u1 =0.5, u2 =0.5; and the improper Laplace prior – u1 =0, u2 =0. If
we transform the beta distribution to the corresponding density over the logit
l ≡ ln p/ (1 − p), we find it is always a pleasant bell-shaped density over l, while
the density over p may have singularities at p = 0 and p = 1 (figure 23.7).

More dimensions

The Dirichlet distribution is a density over an I-dimensional vector p whose
I components are positive and sum to 1. The beta distribution is a special
case of a Dirichlet distribution with I = 2. The Dirichlet distribution is
parameterized by a measure u (a vector with all coefficients ui > 0) which
I will write here as u = αm, where m is a normalized measure over the I
components (

∑

mi = 1), and α is positive:

P (p |αm) =
1

Z(αm)

I
∏

i=1

pαmi−1
i δ (

∑

i pi − 1) ≡ Dirichlet(I)(p|αm) (23.30)

The function δ(x) is the Dirac delta function which restricts the distribution
to the simplex such that p is normalized, i.e.,

∑

i pi = 1. The normalizing
constant of the Dirichlet distribution is:

Z(αm) =
∏

i

Γ(αmi) /Γ(α) . (23.31)

The vector m is the mean of the probability distribution:
∫

Dirichlet(I)(p|αm) p dIp = m. (23.32)

When working with a probability vector p, it is often helpful to work in the
‘softmax basis’, in which, for example, a three-dimensional probability p =
(p1, p2, p3) is represented by three numbers a1, a2, a3 satisfying a1+a2+a3 = 0
and

pi =
1

Z
eai , where Z =

∑

i eai . (23.33)

This nonlinear transformation is analogous to the σ → lnσ transformation
for a scale variable and the logit transformation for a single probability, p →
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Figure 23.8. Three Dirichlet
distributions over a
three-dimensional probability
vector (p1, p2, p3). The upper
figures show 1000 random draws
from each distribution, showing
the values of p1 and p2 on the two
axes. p3 = 1 − (p1 + p2). The
triangle in the first figure is the
simplex of legal probability
distributions.
The lower figures show the same
points in the ‘softmax’ basis
(equation (23.33)). The two axes
show a1 and a2. a3 = −a1 − a2.

ln p
1−p . In the softmax basis, the ugly minus-ones in the exponents in the

Dirichlet distribution (23.30) disappear, and the density is given by:

P (a |αm) ∝ 1

Z(αm)

I
∏

i=1

pαmi

i δ (
∑

i ai) . (23.34)

The role of α can be characterized in two ways. First, the parameter α mea-
sures the sharpness of the distribution (figure 23.8); it measures how different
we expect typical samples p from the distribution to be from the mean m, just
as the precision τ = 1/σ2 of a Gaussian measures how far samples stray from its
mean. A large value of α produces a distribution over p that is sharply peaked
around m. The effect of α in higher-dimensional situations can be visualized
by drawing a typical sample from the distribution Dirichlet(I)(p|αm), with m

set to the uniform vector mi = 1/I, and making a Zipf plot, that is, a ranked
plot of the values of the components pi. It is traditional to plot both pi (ver-
tical axis) and the rank (horizontal axis) on logarithmic scales so that power
law relationships appear as straight lines. Figure 23.9 shows these plots for a
single sample from ensembles with I = 100 and I = 1000 and with α from 0.1
to 1000. For large α, the plot is shallow with many components having simi-
lar values. For small α, typically one component pi receives an overwhelming
share of the probability, and of the small probability that remains to be shared
among the other components, another component pi′ receives a similarly large
share. In the limit as α goes to zero, the plot tends to an increasingly steep
power law.

I = 100

0.0001

0.001

0.01

0.1

1

1 10 100

0.1
1

10
100

1000

I = 1000

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

0.1
1

10
100

1000

Figure 23.9. Zipf plots for random
samples from Dirichlet
distributions with various values
of α = 0.1 . . . 1000. For each value
of I = 100 or 1000 and each α,
one sample p from the Dirichlet
distribution was generated. The
Zipf plot shows the probabilities
pi, ranked by magnitude, versus
their rank.

Second, we can characterize the role of α in terms of the predictive dis-
tribution that results when we observe samples from p and obtain counts
F = (F1, F2, . . . , FI) of the possible outcomes. The value of α defines the
number of samples from p that are required in order that the data dominate
over the prior in predictions.

Exercise 23.3.[3 ] The Dirichlet distribution satisfies a nice additivity property.
Imagine that a biased six-sided die has two red faces and four blue faces.
The die is rolled N times and two Bayesians examine the outcomes in
order to infer the bias of the die and make predictions. One Bayesian
has access to the red/blue colour outcomes only, and he infers a two-
component probability vector (pR, pB). The other Bayesian has access
to each full outcome: he can see which of the six faces came up, and
he infers a six-component probability vector (p1, p2, p3, p4, p5, p6), where
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pR = p1 + p2 and pB = p3 + p4 + p5 + p6. Assuming that the sec-
ond Bayesian assigns a Dirichlet distribution to (p1, p2, p3, p4, p5, p6) with
hyperparameters (u1, u2, u3, u4, u5, u6), show that, in order for the first
Bayesian’s inferences to be consistent with those of the second Bayesian,
the first Bayesian’s prior should be a Dirichlet distribution with hyper-
parameters ((u1 + u2), (u3 + u4 + u5 + u6)).

Hint: a brute-force approach is to compute the integral P (pR, pB) =
∫

d6pP (p |u) δ(pR − (p1 + p2)) δ(pB − (p3 + p4 + p5 + p6)). A cheaper
approach is to compute the predictive distributions, given arbitrary data
(F1, F2, F3, F4, F5, F6), and find the condition for the two predictive dis-
tributions to match for all data.

The entropic distribution for a probability vector p is sometimes used in
the ‘maximum entropy’ image reconstruction community.

P (p |αm) =
1

Z(α)
exp[αH(p)] δ(

∑

i pi − 1) , (23.35)

where H(p) =
∑

i pi log 1/pi.

Further reading

See (MacKay and Peto, 1995) for fun with Dirichlets.

�
23.6 Further exercises

Exercise 23.4.[2 ] N datapoints {xn} are drawn from a gamma distribution
P (x | s, c) = Γ(x; s, c) with unknown parameters s and c. What are the
maximum likelihood parameters s and c?


