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20

An Example Inference Task: Clustering

Human brains are good at finding regularities in data. One way of expressing
regularity is to put a set of objects into groups that are similar to each other.
For example, biologists have found that most objects in the natural world
fall into one of two categories: things that are brown and run away, and
things that are green and don’t run away. The first group they call animals,
and the second, plants. We’ll call this operation of grouping things together
clustering. If the biologist further sub-divides the cluster of plants into sub-
clusters, we would call this ‘hierarchical clustering’; but we won’t be talking
about hierarchical clustering yet. In this chapter we’ll just discuss ways to
take a set of N objects and group them into K clusters.

There are several motivations for clustering. First, a good clustering has
predictive power. When an early biologist encounters a new green thing he has
not seen before, his internal model of plants and animals fills in predictions for
attributes of the green thing: it’s unlikely to jump on him and eat him; if he
touches it, he might get grazed or stung; if he eats it, he might feel sick. All of
these predictions, while uncertain, are useful, because they help the biologist
invest his resources (for example, the time spent watching for predators) well.
Thus, we perform clustering because we believe the underlying cluster labels
are meaningful, will lead to a more efficient description of our data, and will
help us choose better actions. This type of clustering is sometimes called
‘mixture density modelling’, and the objective function that measures how
well the predictive model is working is the information content of the data,
log 1/P ({x}).

Second, clusters can be a useful aid to communication because they allow
lossy compression. The biologist can give directions to a friend such as ‘go to
the third tree on the right then take a right turn’ (rather than ‘go past the
large green thing with red berries, then past the large green thing with thorns,
then . . .’). The brief category name ‘tree’ is helpful because it is sufficient to
identify an object. Similarly, in lossy image compression, the aim is to convey
in as few bits as possible a reasonable reproduction of a picture; one way to do
this is to divide the image into N small patches, and find a close match to each
patch in an alphabet of K image-templates; then we send a close fit to the
image by sending the list of labels k1, k2, . . . , kN of the matching templates.
The task of creating a good library of image-templates is equivalent to finding
a set of cluster centres. This type of clustering is sometimes called ‘vector
quantization’.

We can formalize a vector quantizer in terms of an assignment rule x →
k(x) for assigning datapoints x to one of K codenames, and a reconstruction

rule k → m(k), the aim being to choose the functions k(x) and m(k) so as to
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minimize the expected distortion, which might be defined to be

D =
∑

x

P (x)
1

2

[

m(k(x)) − x
]2

. (20.1)

[The ideal objective function would be to minimize the psychologically per-
ceived distortion of the image. Since it is hard to quantify the distortion
perceived by a human, vector quantization and lossy compression are not so
crisply defined problems as data modelling and lossless compression.] In vec-
tor quantization, we don’t necessarily believe that the templates {m(k)} have
any natural meaning; they are simply tools to do a job. We note in passing
the similarity of the assignment rule (i.e., the encoder) of vector quantization
to the decoding problem when decoding an error-correcting code.

A third reason for making a cluster model is that failures of the cluster
model may highlight interesting objects that deserve special attention. If
we have trained a vector quantizer to do a good job of compressing satellite
pictures of ocean surfaces, then maybe patches of image that are not well
compressed by the vector quantizer are the patches that contain ships! If the
biologist encounters a green thing and sees it run (or slither) away, this misfit
with his cluster model (which says green things don’t run away) cues him
to pay special attention. One can’t spend all one’s time being fascinated by
things; the cluster model can help sift out from the multitude of objects in
one’s world the ones that really deserve attention.

Figure 20.1. N = 40 data points.

A fourth reason for liking clustering algorithms is that they may serve
as models of learning processes in neural systems. The clustering algorithm
that we now discuss, the K-means algorithm, is an example of a competitive

learning algorithm. The algorithm works by having the K clusters compete
with each other for the right to own the data points.

�
20.1 K-means clustering

The K-means algorithm is an algorithm for putting N data points in an I- About the name... As far as I
know, the ‘K’ in K-means
clustering simply refers to the
chosen number of clusters. If
Newton had followed the same
naming policy, maybe we would
learn at school about ‘calculus for
the variable x’. It’s a silly name,
but we are stuck with it.

dimensional space into K clusters. Each cluster is parameterized by a vector
m(k) called its mean.

The data points will be denoted by x(n) where the superscript n runs from
1 to the number of data points N . Each vector x is a vector with I components
xi. We will assume that the space that x lives in is a real space and that we
have a metric that defines distances between points, for example,

d(x,y) =
1

2

∑

i

(xi − yi)
2. (20.2)

To start the K-means algorithm (algorithm 20.2), the K means {m(k)}
are initialized in some way, for example to random values. K means is then
an iterative two-step algorithm. In the assignment step, each data point n is
assigned to the nearest mean. In the update step, the means are adjusted to
match the sample means of the data points that they are responsible for.

The K-means algorithm is demonstrated for a toy two-dimensional data set
in figure 20.3, where 2 means are used. The assignments of the points to the
two clusters are indicated by two point styles, and the two means are shown
by the circles. The algorithm converges after three iterations, at which point
the assignments are unchanged so the means remain unmoved when updated.
The K-means algorithm always converges to a fixed point.
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Initialization. Set K means {m(k)} to random values.

Assignment step. Each data point n is assigned to the nearest mean.
We denote our guess for the cluster k(n) that the point x(n) belongs
to by k̂(n).

k̂(n) = argmin
k

{d(m(k),x(n))}. (20.3)

An alternative, equivalent representation of this assignment of
points to clusters is given by ‘responsibilities’, which are indicator

variables rnk. In the assignment step, we set r
(n)
k to one if mean k

is the closest mean to datapoint x(n); otherwise r
(n)
k is zero.

r
(n)
k =

{

1 if k̂(n) = k

0 if k̂(n) 6= k.
(20.4)

What about ties? – We don’t expect two means to be exactly the
same distance from a data point, but if a tie does happen, k̂(n) is
set to the smallest of the winning {k}.

Update step. The model parameters, the means, are adjusted to match
the sample means of the data points that they are responsible for.

m(k) =

∑

n

r
(n)
k x(n)

R(k)
(20.5)

where R(k) is the total responsibility of mean k,

R(k) =
∑

n

r
(n)
k . (20.6)

What about means with no responsibilities? – If R(k) = 0, then we
leave the mean m(k) where it is.

Repeat the assignment step and update step until the assign-
ments do not change.

Algorithm 20.2. The K-means
clustering algorithm.
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Data:

Assignment Update Assignment Update Assignment Update

Figure 20.3. K means algorithm
applied to a data set of 40 points.
K = 2 means evolve to stable
locations after three iterations.

Run 1

Run 2

Figure 20.4. K means algorithm
applied to a data set of 40 points.
Two separate runs, both with
K = 4 means, reach different
solutions. Each frame shows a
successive assignment step.

Exercise 20.1.[4, p.293] See if you can prove that K-means always converges.
[Hint: find a physical analogy and an associated Lyapunov function.]

[A Lyapunov function is a function of the state of the algorithm that
decreases whenever the state changes and that is bounded below. If a
system has a Lyapunov function then its dynamics converge.]

The K-means algorithm with a larger number of means, 4, is demonstrated in
figure 20.4. The outcome of the algorithm depends on the initial condition.
In the first case, after five iterations, a steady state is found in which the data
points are fairly evenly split between the four clusters. In the second case,
after six iterations, half the data points are in one cluster, and the others are
shared among the other three clusters.

Questions about this algorithm

The K-means algorithm has several ad hoc features. Why does the update step
set the ‘mean’ to the mean of the assigned points? Where did the distance d
come from? What if we used a different measure of distance between x and m?
How can we choose the ‘best’ distance? [In vector quantization, the distance
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Figure 20.5. K means algorithm
for a case with two dissimilar
clusters. (a) The “little ’n’ large”
data. (b) A stable set of
assignments and means. Note that
four points belonging to the broad
cluster have been incorrectly
assigned to the narrower cluster.

(a) (b)

Figure 20.6. Two elongated
clusters, and the stable solution
found by the K-means algorithm.

function is provided as part of the problem definition; but I’m assuming we
are interested in data-modelling rather than vector quantization.] How do we
choose K? Having found multiple alternative clusterings for a given K, how
can we choose among them?

Cases where K-means might be viewed as failing.

Further questions arise when we look for cases where the algorithm behaves
badly (compared with what the man in the street would call ‘clustering’).
Figure 20.5a shows a set of 75 data points generated from a mixture of two
Gaussians. The right-hand Gaussian has less weight (only one fifth of the data
points), and it is a less broad cluster. Figure 20.5b shows the outcome of using
K-means clustering with K = 2 means. Four of the big cluster’s data points
have been assigned to the small cluster, and both means end up displaced
to the left of the true centres of the clusters. The K-means algorithm takes
account only of the distance between the means and the data points; it has
no representation of the weight or breadth of each cluster. Consequently, data
points which actually belong to the broad cluster are incorrectly assigned to
the narrow cluster.

Figure 20.6 shows another case of K-means behaving badly. The data
evidently falls into two elongated clusters. But the only stable state of the
K-means algorithm is that shown in figure 20.6b: the two clusters have been
sliced in half! These two examples show that there is something wrong with
the distance d in the K-means algorithm. The K-means algorithm has no way
of representing the size or shape of a cluster.

A final criticism of K-means is that it is a ‘hard’ rather than a ‘soft’
algorithm: points are assigned to exactly one cluster and all points assigned
to a cluster are equals in that cluster. Points located near the border between
two or more clusters should, arguably, play a partial role in determining the
locations of all the clusters that they could plausibly be assigned to. But in
the K-means algorithm, each borderline point is dumped in one cluster, and
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has an equal vote with all the other points in that cluster, and no vote in any
other clusters.

�
20.2 Soft K-means clustering

These criticisms of K-means motivate the ‘soft K-means algorithm’, algo-
rithm 20.7. The algorithm has one parameter, β, which we could term the
stiffness.

Assignment step. Each data point x(n) is given a soft ‘degree of as-
signment’ to each of the means. We call the degree to which x(n)

is assigned to cluster k the responsibility r
(n)
k (the responsibility of

cluster k for point n).

r
(n)
k =

exp
(

−β d(m(k),x(n))
)

∑

k′ exp
(

−β d(m(k′),x(n))
) . (20.7)

The sum of the K responsibilities for the nth point is 1.

Update step. The model parameters, the means, are adjusted to match
the sample means of the data points that they are responsible for.

m(k) =

∑

n

r
(n)
k x(n)

R(k)
(20.8)

where R(k) is the total responsibility of mean k,

R(k) =
∑

n

r
(n)
k . (20.9)

Algorithm 20.7. Soft K-means
algorithm, version 1.

Notice the similarity of this soft K-means algorithm to the hard K-means
algorithm 20.2. The update step is identical; the only difference is that the

responsibilities r
(n)
k can take on values between 0 and 1. Whereas the assign-

ment k̂(n) in the K-means algorithm involved a ‘min’ over the distances, the
rule for assigning the responsibilities is a ‘soft-min’ (20.7).

. Exercise 20.2.[2 ] Show that as the stiffness β goes to ∞, the soft K means algo-
rithm becomes identical to the original hard K-means algorithm, except
for the way in which means with no assigned points behave. Describe
what those means do instead of sitting still.

Dimensionally, the stiffness β is an inverse-length-squared, so we can as-
sociate a lengthscale, σ ≡ 1/

√
β, with it. The soft K-means algorithm is

demonstrated in figure 20.8. The lengthscale is shown by the radius of the
circles surrounding the four means. Each panel shows the final fixed point
reached for a different value of the lengthscale σ.

�
20.3 Conclusion

At this point, we may have fixed some of the problems with the original K-
means algorithm by introducing an extra complexity-control parameter β. But
how should we set β? And what about the problem of the elongated clusters,
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Large σ . . .

. . .

. . . small σ

Figure 20.8. Soft K-means
algorithm, version 1, applied to a
data set of 40 points. K = 4.
Implicit lengthscale parameter
σ = 1/β1/2 varied from a large to
a small value. Each picture shows
the state of all four means, with
the implicit lengthscale shown by
the radius of the four circles, after
running the algorithm for several
tens of iterations. At the largest
lengthscale, all four means
converge exactly to the data
mean. Then the four means
separate into two groups of two.
At shorter lengthscales, each of
these pairs itself bifurcates into
subgroups.

and the clusters of unequal weight and width? Adding one stiffness parameter
β is not going to make all these problems go away.

We’ll come back to these questions in a later chapter, as we develop the
mixture-density-modelling view of clustering.

Further reading

For a vector-quantization approach to clustering see (Luttrell, 1989; Luttrell,
1990).

�
20.4 Exercises

. Exercise 20.3.[3, p.293] Explore the properties of the soft K-means algorithm,
version 1, assuming that the datapoints {x} come from a single separable
two-dimensional Gaussian distribution with mean zero and variances
(var(x1), var(x2)) = (σ2

1 , σ
2
2), with σ2

1 > σ2
2 . Set K = 2, assume N is

large, and investigate the fixed points of the algorithm as β is varied.
[Hint: assume that m(1) = (m, 0) and m(2) = (−m, 0).]

. Exercise 20.4.[3 ] Consider the soft K-means algorithm applied to a large

-1 1

amount of one-dimensional data that comes from a mixture of two equal-
weight Gaussians with true means µ = ±1 and standard deviation σP ,
for example σP = 1. Show that the hard K-means algorithm with K = 2
leads to a solution in which the two means are further apart than the
two true means. Discuss what happens for other values of β, and find
the value of β such that the soft algorithm puts the two means in the
correct places.
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�
20.5 Solutions

Solution to exercise 20.1 (p.289). We can associate an ‘energy’ with the state
of the K-means algorithm by connecting a spring between each point x(n) and
the mean that is responsible for it. The energy of one spring is proportional to
its squared-length, namely βd(x(n),m(k)) where β is the stiffness of the spring.
The total energy of all the springs is a Lyapunov function for the algorithm,
because (a) the assignment step can only decrease the energy – a point only
changes its allegiance if the length of its spring would be reduced; (b) the
update step can only decrease the energy – moving m(k) to the mean is the
way to minimize the energy of its springs; and (c) the energy is bounded below
– which is the second condition for a Lyapunov function. Since the algorithm
has a Lyapunov function, it converges.

Solution to exercise 20.3 (p.292). If the means are initialized to m(1) = (m, 0)
and m(1) = (−m, 0), the assignment step for a point at location x1, x2 gives

m1
m2

m2

m1

Figure 20.9. Schematic diagram of
the bifurcation as the largest data
variance σ1 increases from below
1/β1/2 to above 1/β1/2. The data
variance is indicated by the
ellipse.

r1(x) =
exp(−β(x1 − m)2/2)

exp(−β(x1 − m)2/2) + exp(−β(x1 + m)2/2)
(20.10)

=
1

1 + exp(−2βmx1)
, (20.11)

and the updated m is

m′ =

∫

dx1 P (x1)x1 r1(x)
∫

dx1 P (x1) r1(x)
(20.12)

= 2

∫

dx1 P (x1)x1
1

1 + exp(−2βmx1)
. (20.13)

Now,m = 0 is a fixed point, but the question is, is it stable or unstable? For
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Figure 20.10. The stable mean
locations as a function of σ1, for
constant β, found numerically
(thick lines), and the
approximation (20.22) (thin lines).

tiny m (that is, βσ1m � 1), we can Taylor expand

1

1 + exp(−2βmx1)
' 1

2
(1 + βmx1) + · · · (20.14)

so

m′ '
∫

dx1 P (x1) x1 (1 + βmx1) (20.15)

= σ2
1βm. (20.16)

For small m, m either grows or decays exponentially under this mapping,
depending on whether σ2

1β is greater than or less than 1. The fixed point
m = 0 is stable if

σ2
1 ≤ 1/β (20.17)

and unstable otherwise. [Incidentally, this derivation shows that this result is
general, holding for any true probability distribution P (x1) having variance
σ2

1 , not just the Gaussian.]

If σ2
1 > 1/β then there is a bifurcation and there are two stable fixed points

surrounding the unstable fixed point at m = 0. To illustrate this bifurcation,
figure 20.10 shows the outcome of running the soft K-means algorithm with
β = 1 on one-dimensional data with standard deviation σ1 for various values of
σ1. Figure 20.11 shows this pitchfork bifurcation from the other point of view,
where the data’s standard deviation σ1 is fixed and the algorithm’s lengthscale
σ = 1/β1/2 is varied on the horizontal axis.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2

-2 -1 0 1 2

Data density
Mean locns.

-2 -1 0 1 2

Figure 20.11. The stable mean
locations as a function of 1/β1/2,
for constant σ1.
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Here is a cheap theory to model how the fitted parameters ±m behave beyond
the bifurcation, based on continuing the series expansion. This continuation
of the series is rather suspect, since the series isn’t necessarily expected to
converge beyond the bifurcation point, but the theory fits well anyway.

We take our analytic approach one term further in the expansion

1

1 + exp(−2βmx1)
' 1

2
(1 + βmx1 −

1

3
(βmx1)

3) + · · · (20.18)

then we can solve for the shape of the bifurcation to leading order, which
depends on the fourth moment of the distribution:

m′ '
∫

dx1 P (x1)x1(1 + βmx1 −
1

3
(βmx1)

3) (20.19)

= σ2

1
βm − 1

3
(βm)33σ4

1
. (20.20)

[At (20.20) we use the fact that P (x1) is Gaussian to find the fourth moment.]
This map has a fixed point at m such that

σ2

1β(1 − (βm)2σ2

1) = 1, (20.21)

i.e.,

m = ±β−1/2
(σ2

1β − 1)1/2

σ2

1
β

. (20.22)

The thin line in figure 20.10 shows this theoretical approximation. Figure 20.10
shows the bifurcation as a function of σ1 for fixed β; figure 20.11 shows the
bifurcation as a function of 1/β1/2 for fixed σ1.

. Exercise 20.5.[2, p.294] Why does the pitchfork in figure 20.11 tend to the val-
ues ∼±0.8 as 1/β1/2 → 0? Give an analytic expression for this asymp-
tote.

Solution to exercise 20.5 (p.294). The asymptote is the mean of the rectified
Gaussian,

∫

∞

0 Normal(x, 1)x dx

1/2
=

√

2/π ' 0.798. (20.23)


