Lecture 18: Q Learning
Q Learning

Learning optimal policy $\pi^*(s)$ entails learning V^*, but this requires knowing $r()$ and $\delta()$

not typically known, so must learn an optimal policy for an unknown environment, thru exploration

Q-function: value of executing a followed by optimal policy

$$Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))$$

$$\pi^*(s) = \arg \max_a Q(s, a)$$

$$Q(s, a) = r(s, a) + \gamma \max_{a'} Q(\delta(s, a), a')$$

purely local decisions – base action choices on Q values for current state – will be optimal policy

Learning rule:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$
Q learning algorithm

assumes deterministic rewards and actions

1. Initialize $\hat{Q}(s, a) \leftarrow 0 \quad \forall s, a$

2. Observe current state s

3. Repeat forever
 • select action a and execute it
 • earn immediate reward r
 • observe new state s'
 • update $\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$
 • update $s \leftarrow s'$
Q learning setup

training set consists of series of episodes – sequence of (state,action,reward) triples ending at absorbing state

for each executed action \(a \) resulting in a transition from state \(s_i \) to state \(s_j \), the algorithm updates \(\hat{Q}(s_i, a) \) using the learning rule

intuition for simple grid world, reward only entering goal state:

1. all \(\hat{Q}(s, a) \) start at 0

2. first episode – only update \(\hat{Q}(s, a) \) for transition leading to goal state

3. next episode – if go thru this next-to-last transition, will update \(\hat{Q}(s, a) \) another step back

4. eventually propagate information from transitions with non-zero reward throughout state-action space
Q learning convergence

under certain conditions, \hat{Q} will converge to Q:

- deterministic actions and rewards
- bounded rewards
- every state-action pair must be visited infinitely often

proof: can show that error decreases monotonically:

$$|\hat{Q}_{n+1}(s, a) - Q(s, a)| \leq \gamma \max_{s', a'} |\hat{Q}_n(s', a') - Q(s', a')|$$

1. $\hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a)$
2. $0 \leq \hat{Q}_n(s, a) \leq Q(s, a)$

exploration/exploitation tradeoff — learn model faster vs. execute best action according to current model: can make policy select best action 95%, random action 5%