
Lecture 16

Multidimensional Scaling & Isomap



Motivation

• high-dimensional data often lies on an intrinsically low-dimensional

manifold

• e.g. consider set of all rotations of a 20 × 20 pixel image,

this might trace out a curve (or loop) in R400



• Goal: given high-dimensional points xi, recover the low-

dimensional coordinates of the data, yi, that describe where

the points lie on the mainfold

• (in other words) find an embedding of the data in a low-

dimensional space, that preserves its essential regularities

• Useful for: data visualization (it’s hard to see more than 3D),

discovery of interesting structure in data, smooth interpola-

tion



Another example

• data comes from a 2D plane, embedded in 3D space

• ideally we would like to find a mapping such that nearby

points on the roll (B) are also adjacent in 2D (C)



Multidimensional Scaling

• images (yi) of original points (xi) should have approximately

the same interpoint distances as the originals

• let δij = distance between xi and xj,

and dij = distance between yi and yj

e.g. Euclidean distance dij = ‖yi − yj‖2

• we want ∀i, j (δij ≈ dij)

• exact equality generally not possible, so minize an error func-

tion J of the y’s



Error Functions

• remember: dij is a function of yi and yj, and given the data

the δij’s are constant

• Jee =

∑

i<j(dij − δij)
2

∑

i<j δ2ij
penalizes large absolute errors

• Jff =
∑

i<j

(

dij − δij

δij

)2

penalizes large relative errors

• Jef =
1

∑

i<j δij

∑

i<j

(dij − δij)
2

δij
a compromise between the two



Gradient Updates

• ∇Jee(yk) =
2

∑

i<j δ2ij

∑

j 6=k

(dkj − δkj)
yk − yj

dkj

• ∇Jff(yk) = 2
∑

j 6=k

dkj − δkj

δ2kj

yk − yj

dkj

• ∇Jef(yk) =
2

∑

i<j δij

∑

j 6=k

dkj − δkj

δkj

yk − yj

dkj

• Algortithm:

– compute or obtain distances δij

– initialize the points y1, . . . ,yn (e.g. randomly)

– until convergence, ∀i yi ← yi − η∇J(yi)



MDS in action



Other Notes

• δij’s need not be actual distances between points, then can

be arbitrary ‘disparities’ between items

e.g. the dissimilarity between two faces, as judged by a hu-

man observer

• MDS + Euclidean distance + Squared Error = PCA

• MDS can flatten the ‘swissroll’ but cannot unroll it – why?



Isomap

• Euclidean distance may be a poor measure of dissimilarity

between points

• instead use geodesic distance, distance between points along

the manifold

• this more accurately captures the neighbourhood relation-

ships that should be preserved



Calculating Geodesic Distance

• without knowing the manifold, calculating geodesic distance

is impossible

• for nearby points, geodesic distance ≈ Euclidean distance

• for faraway points, approximate geodesic distance by a se-

quence ‘short hops’ between neighbouring points



Isomap Algorithm

• Given input points {xi}
n
i=1, compute interpoint distances δij =

‖xi − xj‖

• Construct neighborhood graph, G, two possible ways:

– edge i, j ∈ G if i is is a K-nearest-neighbor of j

– edge i, j ∈ G if δij < ε, ε some neighborhood size

edge i↔ j gets weight δij

• Compute shortest path distances dij between all pairs of

nodes in G, using your favourite algorithm (Dijkstra, Floyd-

Warshall)

• Use classical MDS on the shortest-path distances {dij} to

compute the images yi



Notes on Isomap

• if neighborhood graph has disconnected components, algo-

rithm will fail

• is not very robust to noise


