Lecture 16 Multidimensional Scaling & Isomap

Motivation

- high-dimensional data often lies on an intrinsically low-dimensional manifold
- e.g. consider set of all rotations of a 20 \times 20 pixel image, this might trace out a curve (or loop) in \mathbb{R}^{400}

• Goal: given high-dimensional points x_i , recover the lowdimensional coordinates of the data, y_i , that describe where the points lie on the mainfold

- (in other words) find an embedding of the data in a lowdimensional space, that preserves its essential regularities
- Useful for: data visualization (it's hard to see more than 3D), discovery of interesting structure in data, smooth interpolation

Another example

- data comes from a 2D plane, embedded in 3D space
- ideally we would like to find a mapping such that nearby points on the roll (B) are also adjacent in 2D (C)

Multidimensional Scaling

- images (y_i) of original points (x_i) should have approximately the same interpoint distances as the originals
- let δ_{ij} = distance between \mathbf{x}_i and \mathbf{x}_j , and d_{ij} = distance between \mathbf{y}_i and \mathbf{y}_j e.g. Euclidean distance $d_{ij} = \|\mathbf{y}_i - \mathbf{y}_j\|_2$
- we want $\forall i, j \ (\delta_{ij} \approx d_{ij})$
- exact equality generally not possible, so minize an error function J of the y's

Error Functions

• remember: d_{ij} is a function of y_i and y_j , and given the data the δ_{ij} 's are constant

•
$$J_{ee} = \frac{\sum_{i < j} (d_{ij} - \delta_{ij})^2}{\sum_{i < j} \delta_{ij}^2}$$
 penalizes large absolute errors

•
$$J_{ff} = \sum_{i < j} \left(\frac{d_{ij} - \delta_{ij}}{\delta_{ij}} \right)^2$$
 penalizes large relative errors

• $J_{ef} = \frac{1}{\sum_{i < j} \delta_{ij}} \sum_{i < j} \frac{(d_{ij} - \delta_{ij})^2}{\delta_{ij}}$ a compromise between the two

Gradient Updates

•
$$\nabla J_{ee}(\mathbf{y}_k) = \frac{2}{\sum_{i < j} \delta_{ij}^2} \sum_{j \neq k} (d_{kj} - \delta_{kj}) \frac{\mathbf{y}_k - \mathbf{y}_j}{d_{kj}}$$

•
$$\nabla J_{ff}(\mathbf{y}_k) = 2 \sum_{j \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}^2} \frac{\mathbf{y}_k - \mathbf{y}_j}{d_{kj}}$$

•
$$\nabla J_{ef}(\mathbf{y}_k) = \frac{2}{\sum_{i < j} \delta_{ij}} \sum_{j \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}} \frac{\mathbf{y}_k - \mathbf{y}_j}{d_{kj}}$$

- Algortithm:
 - compute or obtain distances δ_{ij}
 - initialize the points $\mathbf{y}_1,\ldots,\mathbf{y}_n$ (e.g. randomly)
 - until convergence, $\forall_i \quad \mathbf{y}_i \leftarrow \mathbf{y}_i \eta \nabla J(\mathbf{y}_i)$

MDS in action

Other Notes

- δ_{ij} 's need not be actual distances between points, then can be arbitrary 'disparities' between items e.g. the dissimilarity between two faces, as judged by a human observer
- MDS + Euclidean distance + Squared Error = PCA
- MDS can flatten the 'swissroll' but cannot unroll it why?

Isomap

• Euclidean distance may be a poor measure of dissimilarity between points

- instead use geodesic distance, distance between points along the manifold
- this more accurately captures the neighbourhood relationships that should be preserved

Calculating Geodesic Distance

- without knowing the manifold, calculating geodesic distance is impossible
- for nearby points, geodesic distance \approx Euclidean distance
- for faraway points, approximate geodesic distance by a sequence 'short hops' between neighbouring points

Isomap Algorithm

- Given input points $\{\mathbf{x}_i\}_{i=1}^n$, compute interpoint distances $\delta_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|$
- Construct neighborhood graph, G, two possible ways:
 - edge $i, j \in G$ if i is a K-nearest-neighbor of j
 - edge $i, j \in G$ if $\delta_{ij} < \epsilon$, ϵ some neighborhood size

```
edge i \leftrightarrow j gets weight \delta_{ij}
```

- Compute shortest path distances d_{ij} between all pairs of nodes in G, using your favourite algorithm (Dijkstra, Floyd-Warshall)
- Use classical MDS on the shortest-path distances $\{d_{ij}\}$ to compute the images \mathbf{y}_i

Notes on Isomap

- if neighborhood graph has disconnected components, algorithm will fail
- is not very robust to noise