Lecture 16
Multidimensional Scaling & Isomap



Motivation

e high-dimensional data often lies on an intrinsically low-dimensional
manifold

e €.g. consider set of all rotations of a 20 x 20 pixel image,
this might trace out a curve (or loop) in R#00
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e Goal: given high-dimensional points x;, recover the low-
dimensional coordinates of the data, y;, that describe where
the points lie on the mainfold

e (in other words) find an embedding of the data in a low-
dimensional space, that preserves its essential regularities

e Useful for: data visualization (it's hard to see more than 3D),
discovery of interesting structure in data, smooth interpola-
tion



Another example

e data comes from a 2D plane, embedded in 3D space

e ideally we would like to find a mapping such that nearby
points on the roll (B) are also adjacent in 2D (C)



Multidimensional Scaling

images (y;) of original points (x;) should have approximately
the same interpoint distances as the originals

let 9,; = distance between x; and x;,
and d;; = distance between y; and y;
e.g. Euclidean distance d;; = |ly; — y;ll2

we want Vi, j (5’69 > d'l]>

exact equality generally not possible, so minize an error func-
tion J of the y's



Error Functions

remember: d;; is a function of y; and y;, and given the data
the ¢;;'s are constant
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Gradient Updates
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Algortithm:

— compute or obtain distances 52-3-
— initialize the points yq,...,yn (€.9. randomly)

— until convergence, V;, y; < y; —nVJ(y;)



MDS in action
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Other Notes

° 6ij’s need not be actual distances between points, then can
be arbitrary ‘disparities’ between items

e.g. the dissimilarity between two faces, as judged by a hu-
man observer

e MDS -+ Euclidean distance 4+ Squared Error = PCA

e MDS can flatten the ‘swissroll’ but cannot unroll it — why?




Isomap

e Euclidean distance may be a poor measure of dissimilarity
between points

e instead use geodesic distance, distance between points along
the manifold

e this more accurately captures the neighbourhood relation-
ships that should be preserved



Calculating Geodesic Distance

e without knowing the manifold, calculating geodesic distance
IS impossible

e fOor nearby points, geodesic distance ~ Euclidean distance

e fOr faraway points, approximate geodesic distance by a se-
quence ‘short hops' between neighbouring points



Isomap Algorithm

Given input points {x;}i*_;, compute interpoint distances §;; =

1x; — x|
Construct neighborhood graph, G, two possible ways:
— edge 1,5 € G if ¢ is is a K-nearest-neighbor of j

— edge 7,5 € G if (52-]- < €, € some neighborhood size

edge i «» 5 gets weight 9;;

Compute shortest path distances dz-j between all pairs of
nodes in G, using your favourite algorithm (Dijkstra, Floyd-
Warshall)

Use classical MDS on the shortest-path distances {d;;} to
compute the images y;



Notes on Isomap

e if neighborhood graph has disconnected components, algo-
rithm will fail

e iS NOt very robust to noise



