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Abstract

We propose a novel view synthesis and simulation
method for Millimeter Wave Frequency Modulated Continu-
ous Wave Scanning Radars (mmWave FMCW Radar). Mil-
limeter Wave Radar has high transmittance properties, al-
lowing the signal to propagate through objects like concrete
walls. Radar waves also reflect heavily off of metal vehi-
cles and cause multipath reflections. Current radar simula-
tions are conditioned on other sensor modalities that exploit
game engine rendering and may not accurately introduce
radar-specific noise artifacts. We look to build upon the
recent success of Neural Radiance Fields (NeRFs) to con-
struct novel views that may be useful for downstream testing
of perception systems.

1. Introduction and Motivation
FMCW Radars have recently gained popularity as a

method of localization and perception in many autonomous
driving systems [1] [2] [3] [4] [5]. Due to the logistical chal-
lenge and high cost of conducting real-world experiments,
obtaining data to evaluate these methods at the scale needed
for autonomous driving is challenging. Accurately simu-
lating real-world data for autonomous systems is a widely
pursued topic for many of the common sensor modalities
found on these systems such as cameras and LiDARs.

FMCW radars have unique artifacts and noise profiles
that can make perception for common driving tasks chal-
lenging, including multi-path reflections, limited resolution,
spinning doppler effects, and speckle interference [6] [4].
These artifacts are reliant on the state of the environment,
and therefore, any simulation of these artifacts must be con-
ditioned on observations of environmental phenomena that
induce these artifacts. Current work in simulating radar
leverages simulation engines and mesh reconstruction of
scenes to produce simulated radar observations, which may
not be sufficient for or scale to verify perception systems for
the operation of a real-world deployment.

We look to apply current NeRF techniques based on syn-
thesizing scene synthesis from range sensors to datasets us-

Figure 1. Figure from [5] Multipath reflections from the radar
beam bouncing off the ground are shown in red. Common speckle
interference is shown in cyan. In our work, we wish to emulate
these artifacts and infer the physical phenomena that cause them.

ing mmWave Radar. We hope to generate novel radar scans
within an existing scene with realistic artifacts.

2. Related Work

2.1. Neural Radiance Fields (NeRF)

NeRF is a novel method for synthesizing high-quality
views of complex 3D scenes from a sparse set of input im-
ages [7]. This method uses a fully-connected deep neural
network to model the continuous volumetric scene func-
tion, which maps 5D coordinates (spatial location (x, y, z)
and viewing direction (θ, ϕ)) to volume density and view-
dependent emitted radiance. Key contributions of NeRF
include the model for high-fidelity view synthesis, using
a differentiable volume rendering technique to project the
modeled scene onto image planes, and implementing a hi-
erarchical sampling strategy to render scenes with intricate
geometry and appearance efficiently.

Based on NeRF, recent work has begun to explore using
NeRFs to reconstruct range sensor readings. One such ex-
ample is LiDAR-NeRF [8], which applies NeRF to the syn-



thesis of LiDAR views, addressing the shortcomings of con-
ventional LiDAR simulators and neural networks in gener-
ating lifelike LiDAR imagery. This framework introduces a
differentiable LiDAR renderer, facilitating the direct learn-
ing of 3D point geometries and attributes. Its efficacy is
demonstrated through enhanced performance on the KITTI-
360 and the novel NeRF-MVL datasets, marking a signifi-
cant advancement over existing model-based methods.

NeRFs have also been applied to reconstruct underwater
objects using forward-looking sonar [9]. The authors used a
forward-looking sonar to obtain 2D observations of an un-
derwater object and created a Neural Signed Distance field.
They then used space carving to construct a final mesh. This
work provides a formalism that is the most similar to ours in
that they are also applying a 2D range sensor for 3D recon-
struction. However, this work is mainly focused on under-
water object reconstruction and not inducing realistic sensor
simulation for downstream perception testing.

2.2. Radar Simulation

To the best of the author’s knowledge, at the time of writ-
ing this proposal, two works have sought to simulate auto-
motive radar. The first is Radarays, a physics-based simula-
tion technique that leverages virtual 3D environments with
the ability to tune the reflectance properties of the materi-
als in the environment [10]. This work relies ray tracing
and accurate estimation of the reflectance properties of a
scene, which we hope to infer using Neural Rendering. The
other is There and Back Again, which uses a combination of
cyclic losses to model real radar observations using partially
observed LiDAR points generated from the CARLA simu-
lator and unaligned real radar observations [6]. The simu-
lated observations used to condition the generative model
within this work may not accurately capture enough infor-
mation about the world to induce scene specific radar arti-
facts.

3. mmWave Radar View Synthesis
3.1. mmWave Radar

Autonomous driving technologies have traditionally de-
pended on optical sensors like cameras and lidar to map out
their surroundings. These sensors have led to the develop-
ment of sophisticated methods for both pinpointing a vehi-
cle’s position and recognizing objects [11] [12]. However,
these light-based sensors can falter under conditions where
lighting is poor or obstructed.

Radar, which operates at longer wavelengths, has the the-
oretical advantage of being able to cut through obstructions
like smoke, dust, fog, rain, and snow [13]. Given its ability
to maintain performance where other sensors may fail, inte-
grating radar into current sensor frameworks, or using it as a
primary sensor, presents a promising avenue for enhancing

the measurement and interpretation capabilities essential for
autonomous vehicles.

MmWave radar refers to radar technology that oper-
ates with electromagnetic wavelengths spanning from 1
to 10mm, corresponding to frequencies between 30 and
300GHz. Several national authorities have allocated partic-
ular frequency bands, notably around 76-81GHz, for vehic-
ular uses, including Advanced Driver-Assistance Systems
(ADAS). Consequently, the majority of mmWave radars uti-
lized in commercial settings are tuned to this specified fre-
quency range.

3.1.1 Radar Cross Section

When mmWave radar emits an electromagnetic pulse, it
bounces off objects and returns. The Radar Cross Section
(RCS), influenced by an object’s material, size, and shape,
determines the strength of the reflected signal. Essentially,
RCS is a measure of an object’s reflectivity, akin to the
reflective area of a theoretical sphere. Large objects like
vehicles and concrete walls have higher RCS values than
pedestrians or minor obstacles. The ”radar intensity” of a
reflection, which is key for identifying objects or aiding in
navigation, is the reflected power multiplied by the target’s
RCS. High-intensity signals often indicate significant land-
marks.

3.1.2 FMCW Radar

FMCW radar, unlike simple CW radar, emits a continuous
signal but varies its frequency during operation, allowing it
to modulate the transmission signal in frequency or phase.
This modulation enables radar measurements through run-
time analysis, which is not feasible with unmodulated CW
radar due to its inability to determine target range. CW
radar lacks a timing reference, essential for measuring the
distance to stationary objects. FMCW radar overcomes this
by modulating the transmitted signal’s frequency, creating
a timing mark. As shown in Figure 2, the transmitted sig-
nal’s frequency periodically increases or decreases, and the
received echo signal’s frequency shift, delayed by ∆t due to
the runtime shift, is used to measure distance. Unlike pulse
radar, which measures runtime directly, FMCW radar as-
sesses the phase or frequency differences between the trans-
mitted and received signals to determine distance.

The distance R to the reflecting object can be determined
by the following equation:

R =
c∆t

2
=

c∆f

2(d(f)d(t) )
(1)

where c is the speed of light, ∆t is the delay time [s], ∆f
is the measured frequency difference [Hz], df/dt is the fre-
quency shift per unit of time.



Figure 2. Ranging with an FMCW Radar system

Sensor Specifications

Navtech 0.0438m range solution
CIR304-H Radar 0.9° horizontal resolution

250m range
4Hz

Table 1. Radar Specifications

If the change in frequency is linear over a wide range,
then the radar range can be determined by a simple fre-
quency comparison. The frequency difference ∆f is pro-
portional to the distance R.

3.1.3 Scanning Radar

The two main types of mmWave radar are System-on-Chip
(SoC) Radar and Scanning Radar. Scanning radar systems
capture and store data differently from SoC radars. They
record samples based on a single chirp and the antenna’s
angle during the chirp’s emission. This type of radar gener-
ates two-dimensional data that maps the intensity measured
across various scan angles, which can be visualized in a
radar image. Processing involves applying a Fast Fourier
Transform (FFT) to these samples, followed by a Con-
stant False Alarm Rate (CFAR) filter to refine the measure-
ment of intensity across scanned angles, resulting in a two-
dimensional radar image that represents the scanned envi-
ronment. The whole procedure is illustrated in Figure 3.

The mmWave FMCW Radar used for scanning is
Navtech CIR304-H Radar [14], and its specifications are
shown in Table 1.

3.2. Radar View Synthesis

After acquiring 2D images from the scanning radar, the
subsequent phase involves constructing an image formation

model. This model simulates the outgoing radiance at any
spatial coordinate, denoted by x = (r, θ, ϕ). The purpose of
this model is to synthesize new perspectives or views by ma-
nipulating the spatial data gathered in the 2D radar images.
This is achieved by projecting the captured radiance onto
new coordinate sets, which allows for the creation of images
from viewpoints that were not originally directly imaged by
the radar.

3.2.1 Image Formation Model

As shown in Figure 4, in a radar 2D image denoted as I, the
pixels represent discretized bins in range and azimuth, given
as (ri, θi). The value of each pixel is the cumulative energy
from all the reflecting points within that bin, where each
point is defined by coordinates {Pi = (ri, θi, ϕi);ϕmin ≤
ϕi ≤ ϕmax}, with ϕi representing the elevation angle of
a particular point. However, the information about the el-
evation angle ϕi is not retained in the image. This is be-
cause each azimuth column θi in the image is essentially a
projection of a circular sector πi, which is limited by the
radar’s vertical aperture range (ϕmin, ϕmax) and includes
the z axis, onto the plane where z = 0.

Due to the similarities in the opperation of scanning
Sonar and Radar we describe the image formation models
used in [9]. Considering the radar’s rendering equation, let
Ee denote the energy emitted by the radar towards a minus-
cule reflective segment Pi situated on the arc A(ϕ) ∈ πi,
intersecting the point (ri, θi, 0) as shown in Figure 5. The
energy reflected from Pi and captured by the radar is esti-
mated by the equation:

Er(ri, θi, ϕi) =

∫ ri+ϵ

ri−ϵ

Ee

r2
e−

∫ ri
0 σ(r′,θi,ϕi)dr

′︸ ︷︷ ︸
T

σ(r, θi, ϕi)rdr

(2)
where 2ϵ represents the thickness of the reflective seg-
ment, σ is the density of particles at Pi, and the term
1
r2 reflects the reduction in intensity due to the spherical
spread of the radar signal. The transmittance T , denoted as
e−

∫ ri
0 σ(r′,θi,ϕi)dr

′
, accounts for the exponential weakening

of the signal as it passes through particles that absorb some
of its energy.

Now imagine a surface made up of numerous similar
patches. The energy detected by the radar is the cumu-
lative reflected energy from all these patches, denoted as
{Pi} ∈ A(ϕ), which collectively approximate the surface.
From this, we derive the image formation model:

I(ri, θi) =

∫ ϕmax

ϕmin

∫ ri+ϵ

ri−ϵ

Ee

r2
e−

∫ ri
0 σ(r′,θi,ϕi)dr

′
σ(r, θi, ϕ)rdrdϕ

=

∫ ϕmax

ϕmin

∫ ri+ϵ

ri−ϵ

Ee

r
T (r, θi, ϕ)σ(r, θi, ϕ)drdϕ

(3)



Figure 3. Data Processing Procedure for Scanning Radar

(a) (b) (c)

Figure 4. Radar 2D Image Formation: (a) Scanning radar projects
beams across a full 360° range. (b) A representative 2D image
from the Boreas dataset [14], with the array transposed, contains
pixels at coordinates (r, θ) that reflect the cumulative intensity of
all points on the corresponding elevation arc. (c) The columns in
the image at θi represent the collapse of the circular sector πi onto
the z = 0 plane.

The surface S is defined by the zero level set of N:

S = {x ∈ R3 : N(x) = 0} (4)

For network training with the rendering loss, as detailed
in Equation 3, we apply an approach from Wang et al. [15]
to compute the density value σ(x) using the Signed Dis-
tance Function (SDF):

σ(x) = max(
−dΦs(N(x))

dx

Φs(N(x))
, 0) (5)

where Φs(τ) = (1 + e−sτ )−1 represents the sigmoid func-
tion, serving as a smooth transition function approximating
the occupancy indicator.

3.2.2 Sampling Process

To implement the rendering loss outlined in Eq. 3, we need
to sample points along the arc at positions pi = (ri, θi) and
further sample points along each radar beam. Again due to

Figure 5. 1) All points P = (r, θ, ϕ) along the arc are mapped
onto the elevation plane where z = 0. 2) A tiny segment of the arc
is highlighted in yellow to serve as an example. 3)Our sampling
strategy is visualized as follows: pixels that have been sampled in
the 2D image are marked in blue, with the corresponding points on
the arc depicted in black. For each of these arc points, a radar ray
is drawn (indicated by a green arrow), and specific points along
this ray are sampled (represented by green dots).

the similarities in data, we describe a similar sampling pro-
cedure to [9]. To ensure a dataset that includes both zero
and non-zero intensity sample points, we select NP1 ran-
dom pixels from the image and NP2 pixels where the in-
tensity I(ri, θi) exceeds a predefined threshold. We denote
the collection of these sampled pixels as P .

For every pixel pi ∈ P , stratified sampling is em-
ployed to generate point samples along the corresponding
arc. The elevation angle range [ϕmin, ϕmax] is segmented
into NA uniform intervals, resulting in an angular incre-
ment of ∆ϕ = ϕmax−ϕmin

NA
. Again to achieve variation, a set

of random values, drawn from a Uniform(0,1) distribution
and scaled by ∆ϕ, are added to these angles, yielding a col-
lection of arc points Ap = {Pp = (ri, θi, ϕPp)}.

For each point Pp we sample, a radar ray RPp
is formed,

originating from the radar’s center and extending to Pp.



Along this ray, we sample NR − 1 points. This is done
by selecting NR− 1 range values r′ that are less than r and
follow the pattern r′ = iϵr where i is a positive integer and
ϵ is the radar’s range resolution. This process generates a
set of points RPp

= {p = (r′, θ, ϕPp
)}. Together with the

arc point, these form a set of NR points RPp ∪ Ap along
the ray, comprising NR − 1 sampled points plus the origi-
nal point on the arc. To improve robustness, we adjust the
range of all points in this set by adding a small, uniformly
distributed noise, Uniform(0, 1)ϵr, to each r′ value. Figure
5 depicts the sampling method where, for each radar beam,
range bins are initially selected, followed by the sampling
of a single point within each bin, indicated by the green
points, forming the set RPp

. The black point represents the
modified point on the arc, Pp.

The collection of NR points, RPp
∪ Ap, are initially

given in spherical coordinates, must be converted into a
universal reference frame. This involves translating these
points into Cartesian coordinates, the transforming them to

the global reference frame TW =

[
RW tW
0T 1

]
.

The transformed set of points, are now represented in the
world frame as RW

Pp
∪AW

p , and are the input for the NeRF,
denoted by N. The direction for each ray is the established
by a unit vector:

D(Pp) =
TWPp − tW
|TWPp − tW |

(6)

3.2.3 Discretized Image Formation Model

For computational purposes, we need to discretize the im-
age formation model. The discretized version of Eq. 3 is
presented as follows:

Î(r, θ) =
∑

Pp∈Ap

1

rPp

T [Pp]α[Pp]M(Pp) (7)

here Ap is the arc located at (r, θ), rPp
is the range of the

disturbed point Pp on the arc, M(Pp) is the predicted in-
tensity at Pp by the neural renderer.

The discrete opacity at consecutive samples along the ray
pi and pi+1 is:

α[pi] = 1− exp
(
−
∫ pi+1

pi

σ(p)dp
)

(8)

which is equivalent to :

α[pi] = max
(
Φs(N(pi))− Φs(N(pi+1))

Φs(N(pi))
, 0

)
(9)

The discrete transmittance value at Pp (endpoint of the
ray) is :

T [Pp] =
∏

p1∈Rpp

(1− α[p1]) (10)

It is the product of one minus the opacity α of all points
along the ray except α at Pp.

3.2.4 Training Loss Definition

We use three terms of losses: intensity term, eikonal term,
l1 regularization term.

The intensity loss is:

Lint ≡
1

N1
P +N2

P

∑
p∈P

||Î(p)− I(p)||1 (11)

this loss term encourages the predicted intensity to match
the intensity of the raw input radar images.

The eikonal loss [16] is:

Leik ≡ 1

NRNA(N1
P +N2

P)

∑
x∈X

(||∇N(x)||2 − 1)2 (12)

this loss term is an implicit geometric regularization term
used to regularize the SDF encouraging the network to pro-
duce smooth reconstructions.

Hence, the final traning loss term is:

L = Lint + λeikLeik (13)

4. Training Dataset and Network Architecture
4.1. Training Dataset

Raw radar scans [14] are 2D polar images: M azimuths
× R range bins. The dataset follows Oxford’s convention
and embeds timestamp and encoder information into the
first 11 columns (bytes) of each polar radar scan. The first
8 columns represent a 64-bit integer, the UTC timestamp
of each azimuth. The next 2 columns represent a 16-bit
unsigned integer, the rotational encoder value. The encoder
values can be converted into azimuth angles in radians with:
azimuth = encoder * np.pi / 2800. The next column is un-
used, preserved compatibility with Oxford’s format. This
gives us a raw image resolution of 400 azimuths by 2800
range bins with a maximum range of 200 m. The sam-
ple images for both polar format and Cartesian format are
shown in Figure 8. The ground truth poses are obtained
using a post-processed Applanix GPS, and the dataset’s au-
thors quote the accuracy of this GPS to be approximately
2-4 cm. We also intensity thresholded the radar images at
a threshold of 0.2, to help the model learn the intensities of
the scene.

4.2. Network Architecture

The neural implicit surface representation N and the
neural renderer M are both multi-layer perceptrons (MLPs)
with 4 hidden layers and a feature dimension of 64, as
shown in Figure 7. The neural representation N processes



(a) Polar Format (b) Cartesian Format

Figure 6. Raw Radar Scans 2D Images from Boreas Dataset

Figure 7. Network Architecture from [9]

3D spatial points x, yielding their signed distance from a
surface N(x) and a corresponding learned feature vector
F(x). The derivative of N(x) with respect to x, denoted
∇N(x), is computed to ascertain the density σ(x) (refer
to Eq. 5). Moreover, the vector D(x) represents the ori-
entation of each ray, as defined in Eq. 6. These compo-
nents, F(x), ∇N(x), and D(x), serve as inputs to the neu-
ral renderer M, which then produces the outgoing radiance
required for creating synthesized views.

5. Evaluation and Experimental Setup
We trained and tested two different amounts of radar

scans in the Boreas Dataset [14] using the 2020−11−26−
13 − 58 scene for training and evaluation. The raw sensor
data has a high resolution and long range, which made sam-
pling rays directly from the raw sensor computationally in-

feasible and produced unusable results. To circumvent this,
we downsampled the polar images to a (200, 450) resolu-
tion. For sequence 1, we used 80 radar frames to train and
held out every 5th frame for evaluation starting from frame
20 in the 2020− 11− 26− 13− 58 scene. For sequence 2
we used 400 radar frames for training and held out every 5th
frame for evaluation starting again from the 20th frame in
the 2020−11−26−13−58 scene. To evaluate the quality
of the synthesized scans, we calculate the RMSE and MAE
in the pixel space using ground truth observation from that
pose and our rendered image. A comparison between other
radar simulation approaches would be an interesting direc-
tion of future work; however, due to computing restrictions,
time constraints, and setup complexity, we could not run
any baseline comparisons. For our training hyperparame-
ters, we sample 8 points along each ray θ and 4 samples
along each ϕ per θ with 40% samples being sampled from
the ground truth image and 1000 random pixels. We train
for 300 epochs with a learning rate of 5e−4 and the Adam
optmizer [17] and λeik = 0.05. One single training run
took approximately 1 day on an NVIDIA RTX 4090 with
sequence 2. We also provide qualitative results and analysis
in figure 8. To render images from the NeRF we sample
30, 000 random pixels in the image with the same θ and ϕ
parameters.

Metric Sequence 1 Sequence 2
RMSE 0.0429 0.0408
MAE 0.0101 0.0096

Table 2. Evaluation of the NeRF’s performance across two runs
on validation set.



(a) Rendered from seq 2 (b) Ground truth scan for a (c) Rendered from seq 2 (d) Ground truth for c

(e) Rendered from seq 2 (f) Ground truth for e (g) Rendered from seq 2 (h) Ground truth for g

(i) Rendered from seq 1 (j) Ground truth scan for i (k) Rendered from seq 1 (l) Ground truth for scan k

(m) Rendered from seq 1 (n) Ground truth scan for m (o) Rendered from seq 1 (p) Ground truth for o

Figure 8. Qualitative comparison between synthesized view and ground truth. All images are rendered by sampling 30, 0000 random pixels
in the polar images and 8 points along each θ with 4 points along each ϕ. As can be seen from the recovered image, the model has many
”floater” artifacts that are common in NeRF models. The model also did not capture as many multipath artifacts as we had hoped, which
may mean that our light transport model may not be suitable for the sensor. The model did seem to recover occupied and free space and
recovered the general shape of the scan. We can also see that the model can recover more details when trained on fewer frames, suggesting
that the current architecture may be underfitting.



6. Conclusion and Future Work
We have found the unique characteristics of radar to be

challenging to work within the context of view synthesis.
Due to the heavy propagation of radar waves and low SNR
ratio, we found that the model struggles to identify regions
of empty space and requires heavy amounts of sampling to
obtain any results. The model is also very computationally
expensive to train, requiring multiple days of training to see
improvements when using a small number of observations.
We believe that a variable encoding such as those used in
methods like InstantNGP [18] is necessary to achieve better
results. It is also well known that NeRFs tend to struggle
to represent transparency, which occurs frequently within
mmWave radar data, as each azimuth will often have many
returns. This requires many more samples to be captured
fully within the NeRF. The increase in range of up to 200
m and full 360 FOV creates a heavy computational burden
on the training process. It causes us to obtain limited ex-
perimental results and, ultimately, a system that may not be
feasible. We also believe the method can be improved by
learning an embedding for static and moving objects simi-
lar to BlockNeRF [19]. This is because the driving dataset
often contains many moving vehicles. Another interesting
direction for future research would be using widely avail-
able satellite imagery to do image-to-image transfer meth-
ods for driving sequences with a clear overhead view. We
believe that the method of using NeRF to recover driving
sequences may be feasible by aggregating data across mul-
tiple sequences, more efficient sampling, and spatial encod-
ing.
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