
Priority Mechanisms for OLTP and Transactional Web Applications
�

David T. McWherter Bianca Schroeder Anastassia Ailamaki Mor Harchol-Balter

Abstract

Transactional workloads are a hallmark of modern
OLTP and Web applications, ranging from electronic com-
merce and banking to online shopping. Often, the database
at the core of these applications is the performance bottle-
neck. Given the limited resources available to the database,
transaction execution times can vary wildly as they compete
and wait for critical resources. As the competitor is “only a
click away,” valuable (high-priority) users must be ensured
consistently good performance via QoS and transaction pri-
oritization.

This paper analyzes and proposes prioritization for
transactional workloads in traditional database systems
(DBMS). This work first performs a detailed bottleneck
analysis of resource usage by transactional workloads on
commercial and noncommercial DBMS (IBM DB2, Post-
greSQL, Shore) under a range of configurations. Second,
this work implements and evaluates the performance of sev-
eral preemptive and non-preemptive DBMS prioritization
policies in PostgreSQL and Shore. The primary contri-
butions of this work include (i) understanding the bottle-
neck resources in transactional DBMS workloads and (ii) a
demonstration that prioritization in traditional DBMS can
provide 2x–5x improvement for high-priority transactions
using simple scheduling policies, without expense to low-
priority transactions.

1. Introduction

Online transaction processing (OLTP) is a mainstay in
modern commerce, banking, and Internet applications. For
many OLTP applications, particularly e-commerce applica-
tions, clients require fast access times. Unfortunately, serv-
ing requests which involve database activity for dynamic
query processing and data generation can be very slow —
orders of magnitude slower than delivering static content.

�

This work was benefitted from advice and code provided by Mengzhi
Wang, Josef Burger, Tom Lane, and IBM. This work was supported by
NSF grants IIS-0133686, CCR-0205544, CCR-0133077, and by IBM,
Cisco Systems, Seagate Technologies via a grant from the Pittsburgh Dig-
ital Greenhouse and an IBM faculty award.

This slowness is exacerbated under heavy load and over-
load.

To alleviate the problem of costly database accesses, it
can be extremely valuable to assign priorities to users and
provide differing levels of performance. When both high-
and low-priority clients share the database system, high-
priority clients should complete more quickly on average
than their low-priority counterparts. For example, an online
merchant may make use of priorities to provide better per-
formance to new prospective clients, or to big spenders ex-
pected to generate large profits. Alternatively, a web journal
may provide improved responsiveness to “gold-customers”
who pay higher subscription costs. Finally, point-of-sales
systems may run long-running maintenance queries “in the
background,” at low-priority while customer purchases ex-
ecute quickly at high-priority.

The goal of this research is to provide prioritiza-
tion and differentiated performance classes within a tra-
ditional (general-purpose) relational database system run-
ning OLTP and transactional web workloads, including
read/write transactions. This paper provides a detailed
resource utilization breakdown for OLTP workloads exe-
cuting on a range of database platforms including IBM
DB2[16], Shore[17], and PostgreSQL[18]. IBM DB2 and
PostgreSQL are both widely used (commercial and non-
commercial) database systems. Shore is an open source re-
search prototype using traditional two-phase locking (2PL),
the concurrency control used in DB2. PostgreSQL (like
Oracle), on the other hand, uses multiversion concurrency
control (MVCC) [6]. The paper also implements several
transaction prioritization policies within Shore and Post-
greSQL. The prioritization policies studied include non-
preemptive priorities, non-preemptive priorities with prior-
ity inheritance, and preemptive abort scheduling. Given the
focus on web and complex transactional applications, we
use the benchmark OLTP workloads TPC-C and TPC-W.

The primary contributions of this research are twofold:

1. Identification of bottleneck resource(s) across DBMS,
workloads and concurrency levels.

2. Demonstration that simple priority scheduling inside
the DBMS significantly improves high-priority trans-
action execution times without penalizing low-priority



transactions.

With respect to bottleneck identification, we show that
the bottleneck resource for TPC-C on IBM DB2 and Shore,
both of which use 2PL, is lock waiting. By contrast, for the
same TPC-C workload, PostgreSQL, which uses MVCC,
exhibits an I/O synchronization bottleneck. For TPC-W on
DB2 and PostgreSQL, we find that the bottleneck is always
the CPU.

On the issue of scheduling policies, we find that schedul-
ing of bottleneck resources results in improving high-
priority transaction execution times considerably. For sys-
tems with lock bottlenecks (TPC-C on DB2 and Shore),
CPU scheduling is ineffective, but lock scheduling can im-
prove high-priority performance by a factor of 5.3. For
systems with CPU bottleneck (TPC-W), lock scheduling is
ineffective, while CPU scheduling improves high-priority
performance by a factor of 4.5. For PostgreSQL, which
has an I/O synchronization bottleneck, CPU scheduling
with priority inheritance yields a factor of 6 improvement
of high-priority transactions. Provided that the fraction of
high-priority transactions is small, the penalty to the low-
priority transactions is negligible as long as preemption is
not used.

2. Prior Work

There is a wide range of well-known database research,
including that of Abbott, Garcia-Molina, Stankovic, and
others, studying different transaction scheduling policies
and evaluating the effectiveness of each. Most existing im-
plementation work is in the domain of real-time database
systems (RTDBMS), where the goal is not improvement
of mean execution times for classes of transactions, but
rather meeting deadlines associated with each transaction.
These RTDBMS are sufficiently different from the general-
purpose DBMS studied in this paper to warrant investiga-
tion as to whether results for RTDBMS apply to general-
purpose DBMS as well. In addition to the existing im-
plementation work in RTDBMS, there has also been work
on simulation and analytical modeling of prioritization in
DBMS and RTDBMS. Unfortunately, the simulation and
analytical approaches have difficulty in capturing the com-
plex interactions of CPU, I/O, and other resources in the
database system.

In Section 2.1 we summarize the most relevant existing
research on transaction prioritization within RTDBMS. In
Section 2.2 we summarize the existing and ongoing work
on prioritization in general-purpose DBMS.

2.1. Real-Time Databases

Real-time database systems (RTDBMS) have taken cen-
ter stage in the field of database transaction scheduling for

the past decade. These systems are useful for numerous im-
portant applications with intrinsic timing constraints, such
as multimedia (e.g., video-streaming), and industrial control
systems. Traditional DBMS with transaction priorities dif-
fer from RTDBMS. In RTDBMS, each transaction is asso-
ciated with time-dependent constraints (usually deadlines),
which must be honored to maintain transactional semantics.
The goal of minimizing the number of missed constraints
(deadlines), requires maintaining time-cognizant protocols
and various specialized data structures [21], unlike general-
purpose DBMS. Scheduling issues such as priority inver-
sion may have different costs for RTDBMS as compared
to traditional DBMS: i.e., a single priority inversion may
cause a missed deadline while hardly affecting overall mean
execution time. Lastly, RTDBMS workloads can differ sub-
stantially from traditional DBMS workloads.

Abbott and Garcia-Molina [2, 1, 3, 4, 5] extensively
study scheduling RTDBMS in simulation, preemptively and
non-preemptively scheduling the critical resources (CPU,
locks and I/O) to meet real-time deadlines. On the question
of which resource needs to be scheduled, Abbot and Garcia-
Molina conclude that CPU scheduling is most important,
as transactions only acquire resources when they have the
CPU [5]. Additionally, they find scheduling of concurrency
control resources also improves performance.

With respect to scheduling policies, both Abbott and
Garcia-Molina [5] and Huang et. al. [14] examine prior-
ity inheritance and preemptive prioritization in RTDBMS
that use 2PL, to address the priority-inversion problem. Ab-
bott and Garcia-Molina find that priority inheritance is im-
portant when ensuring that deadlines are met, in particular
when the database is small. In contrast, Huang et. al. find
that standard priority inheritance is not very effective in RT-
DBMS.

Kang et. al. [15] differentiate between classes of real-
time transactions, providing different classes with QoS
guarantees on the rate of missed deadlines and data fresh-
ness. They focus on main memory databases.

Our results will differ from those above as follows: (i)
CPU is not always the most important resource to schedule.
For DBMS using 2PL and TPC-C workloads we see that
scheduling locks is far more effective than CPU schedul-
ing. (ii) Priority inheritance is not always necessary, and is
ineffective for some workloads and DBMS.

We attribute these differences in results to the many dif-
ferences between real-time and traditional DBMS and their
workloads.

2.2. Priority Classes

Existing work to establish priority classes for mean
performance (rather than meeting specific deadlines), can
be divided into techniques which schedule transactions (i)



outside the DBMS and (ii) inside the DBMS. External
scheduling is typically implemented using admission con-
trol to prevent transactions from entering the DBMS. Inter-
nal scheduling, by contrast, prioritizes transactions as they
execute within the database.

Recent work at IBM implements priority classes in ad-
mission control [13]. The approach makes admission con-
trol decisions based not only on the number of transactions
in the DBMS, but also on transaction priorities, by limiting
the number of low-priority transactions that are able to in-
terfere with high-priority transactions. Such admission con-
trol reduces lock contention and also limits inefficiencies in-
troduced when the system is under overload, such as virtual
memory paging and thrashing. Consequently, high-priority
transactions under overload can benefit significantly.

Despite the simplicity of admission control for prioritiza-
tion, we believe that internal DBMS scheduling is more ef-
fective. Internal scheduling allows direct control of DBMS
resources, and can utilize knowledge of query plans, trans-
action resource needs, and system resource availability (e.g.
I/O requests and granted locks).

There is much room for further research in transaction
scheduling internal to the DBMS. The most pertinent work,
by Carey et. al. [9] is a simulation study of our same fun-
damental problem: evaluating priority scheduling policies
within DBMS to improve high-priority transaction perfor-
mance. They assume a read-only workload, but recom-
mend mixed read/write workloads should also be exam-
ined in the future. In contrast, our work assumes mixed
read/write workloads and our work uses fully implemented
DBMS rather than a simulator.

Brown et. al. [7] address multiclass workloads with per-
class response time goals. Again, this is a pure simulation
study without experimental validation on a DBMS proto-
type. Moreover, it focuses on a single resource, memory,
while in our work we analyze the resource breakdown for
different DBMS and workloads and consider the different
bottleneck resources.

Prioritization within traditional DBMS has not been a fo-
cus for academic research. As a testament to the importance
of the problem, however, both IBM DB2 and Oracle pro-
vide prioritization tools (IBM DB2gov and QueryPatroller
[16, 10] and Oracle DRM [19]), all of which focus on CPU
scheduling. We have experimented extensively with IBM
DB2gov, and find it does not provide nearly as large of a pri-
oritization benefit for the lock-bound workloads discussed
in this paper. This paper addresses a wider range of schedul-
ing policies for both CPU and lock resources.

3. Experimental Setup

This section describes experimental setup details includ-
ing the workloads, hardware, and software used.

3.1. Workloads

As representative workloads for OLTP and transactional
web applications, we experiment with the TPC-C [11] and
TPC-W [12] (TPC-W Shopping Mix) benchmarks.

The TPC-C workload implementation for DB2 and Post-
greSQL is written and graciously donated by IBM. The
TPC-C Shore implementation was written at CMU. TPC-
C is modified to allow each client to access a different
warehouse and district for each transaction, which produces
more uniform access to the database. The TPC-W workload
comes from the PHARM [8] project with minor improve-
ments, such as an improved connection pooling algorithm.

3.2. Hardware and DBMS

All of the TPC-C experiments for DB2 and Shore are
performed on a 2.2-GHz Pentium 4 with 1GB RAM, one
120GB IDE drive, and a 73GB SCSI drive. The TPC-
C PostgreSQL experiments are conducted on a compa-
rable machine with two 1-GHz processors and 2GB of
RAM, allowing us to handle the larger memory require-
ments of PostgreSQL. The results for PostgreSQL on the
dual-processor (two 1-GHz) machine are similar to those
when performed on the single-processor 2.2-GHz machine
used by DB2 and Shore. The TPC-W experiments are all
conducted with the database running on the 2.2-GHz ma-
chine; the web server and Java servlet engine run on a Pen-
tium III, 736Hz processor with 512MB of main memory;
and the client applications run on two other machines. The
operating system on all machines is Linux 2.4.

The DBMS we experiment with are IBM DB2 [16] ver-
sion 7.1, PostgreSQL [18] version 7.3, and Shore [17] in-
terim release 2. Several modifications are made to Shore,
to improve its support for SIX locking modes, and to fix
minor bugs experienced in transaction rollbacks.

4. The Bottleneck Resource

Central to this work is the idea that understanding a
workload’s resource utilization is essential for effective pri-
oritization. In order to improve high-priority transaction ex-
ecution times, the bottleneck resource, where transactions
spend the bulk of their execution time, must be scheduled,
either directly or indirectly. Given the complexity of mod-
ern database systems, predicting the bottleneck resource is
non-trivial.

In this section, we derive resource utilization break-
downs and determine the bottlenecks for TPC-C on Shore,
DB2, and PostgreSQL and for TPC-W on DB2 and Post-
greSQL. First, we describe the model used for breaking
down transaction resource utilization. Next, we examine



how these resource breakdowns change under varying con-
currency levels and database sizes.

4.1. DBMS Resources: CPU, I/O, Locks

Since the goal of this paper is to improve individual
transaction execution times, and not overall throughput, it
is important to break down execution times from the point
of view of a transaction. We focus on three core DBMS re-
sources: CPU, I/O, and locks, chosen since they are under
control of the database, and are believed to be important in
performance [5].

We define the total execution time of a transaction,���������
	
, as the time from when the transaction is first sub-

mitted to when it completes. We break
�������
�
	

into three
components,

���������
	��������������������������� "!
, correspond-

ing to CPU, I/O, and locks, respectively. These components
consist of just the synchronous time in which the transac-
tion is completely dedicated to either waiting for or con-
suming the corresponding resource.

� �#���
consists of the

time spent running on the processor and the time spent in
the running state, waiting for the processor.

� ���
consists

of the time spent issuing and waiting for synchronous I/O
to complete (although the cost of issuing an I/O operation is
negligible).

� ���� "!
is the time that a transaction spends wait-

ing for database locks. Of course, time spent holding locks
is accounted according to whether the transaction holding
the lock is waiting for or consuming CPU or I/O or waiting
for another lock.

Database locks are broken into “heavyweight” and
“lightweight” locks. Heavyweight locks are used for log-
ical database objects, to ensure the database ACID proper-
ties. Lightweight locks include spinlocks and mutexes used
to protect data structures in the database engine (such as
lock queues). We find that lightweight locking is not a sig-
nificant component of transaction execution times in either
Shore or IBM DB2. PostgreSQL, however, has significant
lightweight lock waiting, due to an idiosyncrasy of the Post-
greSQL implementation. We find almost all lightweight
locking in PostgreSQL functions to serialize the I/O buffer-
pool and Write-Ahead-Logging activity (via the WALIn-
sert, WALWrite, and BufMgr lightweight locks). As
a result, we attribute all the lightweight lock waiting time
for the above-listed locks to I/O. We use the term “locks”
throughout the remainder of this paper to refer exclusively
to heavyweight locks.

We use two different methods to obtain the desired re-
source breakdowns, depending on the DBMS used. For
DB2, since its source code is unavailable, we rely on its
built-in resource measurement facilities: snapshot and event
monitoring [16]. For PostgreSQL and Shore, we imple-
ment custom measurement functionality by instrumenting
the DBMS itself. We compute the total CPU, I/O and lock

wait time over all transactions and then determine the frac-
tion each component makes up of the sum of all execution
times.

For DB2 and PostgreSQL, which use a process-
based architecture, we verify the breakdowns at the
operating system via the vmstat command, record-
ing the fraction of time DBMS processes spend in
the CPU run queue (TASK RUNNING), blocked on
I/O (TASK INTERRUPTIBLE), or waiting for locks
(TASK UNINTERRUPTABLE). We also use a patch to the
Linux kernel to accurately measure CPU wait times (not
measured in Linux by default).

4.2. Breakdown Results

TPC-C. Figure 1 shows the resource breakdowns mea-
sured for TPC-C running on IBM DB2, PostgreSQL, and
Shore. The graphs depict the average portions (indicated
as percentages) of transaction execution time due to CPU,
I/O, and lock resource usage. Although breakdowns are
normalized to 100%, there is a small measurement error of
less than 10% for DB2. We attribute the error to the high-
granularity of DB2’s I/O and CPU measurements.

For each DBMS, Figure 1 presents three sets of results
illustrating the most significant trends. In the first column,
the database size is held constant at 10 warehouses (WH),
and the number of clients connected to the database (con-
currency) is varied. In the second column, the number of
clients is held constant at 10, and the size of the database is
varied by increasing the number of warehouses. In the third
column, we vary the number of clients and warehouses to-
gether, always holding the number of clients at 10 times
the number of warehouses, as specified by TPC-C, demon-
strating breakdowns for standard “realistic” configurations.
Throughout, the think times are fixed at zero.

The database sizes for TPC-C range from 500MB to
3GB, as the number of warehouses grows from 5 to 30
(100MB per WH). The bufferpool size is approximately
800MB for each DBMS, chosen to minimize transaction ex-
ecution times.

The main result shown in Figure 1 is that locks are the
bottleneck resource for both Shore and DB2 (rows 1 and
2), while I/O tends to be the bottleneck resource for Post-
greSQL (row 3). We now discuss these in more detail.

We start with some obvious trends. First observe that as
concurrency is increased while fixing the database size (col-
umn 1), lock contention increases. Also, as the database
size grows, while the concurrency level is held constant
(column 2), the I/O component grows, and the lock compo-
nent decreases. When the database and concurrency level
are scaled according to TPC-C specifications, the relative
resource breakdowns remain fairly stable.

The resource breakdowns for Shore and DB2 (rows 1



1C 10C 20C 50C 70C 100C200C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(a) DB2: Varying Clients, 10
Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(b) DB2: 10 Clients, Varying
Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(c) DB2: Standard Scaling (10
clients per WH)

1C 10C 20C 50C 70C 100C 200C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(d) Shore: Varying Clients, 10
Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(e) Shore: 10 Clients, Varying
Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(f) Shore: Standard Scaling (10
clients per WH)

1C 10C 20C 50C 70C 100C 200C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(g) PostgreSQL: Varying Clients,
10 Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(h) PostgreSQL: 10 Clients,
Varying Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(i) PostgreSQL: Standard Scal-
ing (10 clients per WH)

Figure 1. Resource breakdowns for TPC-C transactions under varying databases and configurations.
The first row shows DB2; the second row shows Shore; and the third row shows PostgreSQL. The
first column (Figures 1(a), 1(d), 1(g)) shows the impact of varying concurrency level by varying the
number of clients. The second column (Figures 1(b), 1(e), 1(h)) shows the impact of varying the
database size (number of warehouses) while holding the number of clients fixed. The third column
(Figures 1(c), 1(f), 1(i)) shows the impact of varying both the number of clients and the database size
according to the TPC-C specification (10 clients for each warehouse).



12C 25C 50C 100C 150C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(a) IBM DB2

12C 25C 50C 100C 150C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(b) PostgreSQL

Figure 2. Resource breakdowns for TPC-W transactions running on IBM DB2 and PostgreSQL.

and 2) are quite similar, and almost always depict lock bot-
tlenecks. This may be surprising, since concurrency con-
trol was a very active area of research in the 1970’s and
80’s, and thus one might think that locking problems were
all resolved at that time. Given our hardware limitations,
we can only experiment with up to 30 WH. It is plausible
that the bottleneck may shift to I/O as the database size in-
creases. Alternatively, additional RAM and disks may hide
the growing I/O for larger databases, leaving locks as the
bottleneck resource.

The resource breakdowns for PostgreSQL (row 3) dif-
fer greatly from those for Shore and DB2: PostgreSQL al-
most always exhibits an I/O bottleneck. As indicated earlier,
PostgreSQL I/O time includes the time for both the actual
I/O operation and the lightweight lock I/O synchronization.
Almost all (80–95%) of the I/O time is due to I/O synchro-
nization in the standard case (Figure 1(i)). While this sug-
gests that I/O scheduling will be necessary for PostgreSQL
prioritization, in Section 5, CPU scheduling will be used to
indirectly schedule I/O.

Although not the bottleneck, locks are sometimes a
non-trivial component for PostgreSQL. In particular, locks
reach 50% when concurrency is increased while fixing the
database size (Figure 1(g)), and reach 30% when standard
TPC-C scaling is used (Figure 1(i)).

The fact that PostgreSQL’s resource breakdowns differ
from those for Shore and DB2 is due to differences in con-
currency control in these systems: Shore and DB2 employ
2PL, while PostgreSQL uses MVCC. With MVCC, Post-
greSQL transactions only have to wait for write-on-write
conflicts. The result is fewer lock waits in PostgreSQL than
in Shore and DB2, shifting its bottleneck to I/O.

Each breakdown presented in Figure 1 is an average
computed over all transactions in an experimental run, and
as such, may not be representative of any particular, or
even most transactions. The breakdowns can be sharply
skewed by a small fraction of exceptional transactions with

extremely long execution times. Thus, the breakdowns
are primarily an indicator of the relative importance of the
resources when minimizing average transaction execution
times.

TPC-W. Figure 2 shows resource breakdowns for TPC-
W transactions running on IBM DB2 and PostgreSQL as a
function of the number of clients connected to the database.
The size of the database is held constant (150MB), and is
representative of a database used by 10 clients according to
the TPC-W specification. Increasing the number of clients
to 150 models extremely high data contention. PostgreSQL
sees almost no locking and DB2 sees very little, as TPC-
W intrinsically has very little data contention. I/O costs are
also low since the database is so small relative to main mem-
ory. Thus, CPU is the bottleneck resource for TPC-W 1.

5. Scheduling the Bottleneck

As seen in Section 4, the bottleneck resource for TPC-C
on Shore and DB2 is locks, suggesting that lock prioritiza-
tion will be effective. Figure 3 motivates this point, show-
ing that transactions that do not wait for locks are almost 20
times faster than those that do.

The bottleneck resource for PostgreSQL is usually I/O.
While I/O scheduling is outside the scope of this paper, it
is well-known that CPU scheduling may indirectly sched-
ule other resources [5], such as I/O or locks. This is due
to the fact that transactions need CPU resources to issue re-
source requests. Consequently, we investigate whether CPU
scheduling is effective for PostgreSQL.

Throughout, we examine both lock and CPU scheduling
for both TPC-C and TPC-W. We have reservations, how-
ever, about the TPC-W workload for two reasons: its trans-

1We find that under extreme configurations, lock waiting can be signif-
icant for TPC-W as well. Since these configurations depart so much from
the TPC-W specifications, we do not consider them here.



No Lock Waits Lock Waits
0

2

4

6

8

10

12

A
vg

 T
im

e 
(s

ec
)

Figure 3. Average execution time for TPC-C
Shore transactions that never wait for locks
compared to those that do, with no prioritiza-
tion. Think time is 1 second.

actions are (i) extremely simplistic, and (ii) need very lit-
tle concurrency control. The TPC-C workload, with more
complex transaction interactions, is in fact more representa-
tive of real-world applications. Note that we do not evaluate
any of the scheduling policies on IBM DB2, since it does
not support such policies and the source code is unavailable
for experimentation.

We begin by defining the specific scheduling policies
that we will explore.

5.1 Prioritization Workload

Throughout this section, we use a representative 10
warehouse database for TPC-C (1GB) and a 10 client
database for TPC-W (150MB). Priorities are assigned
to each TPC-C and TPC-W transaction according to a
Bernoulli trial with probability 10% of being a high-priority.

TPC-C and TPC-W are closed loop systems, where a
fixed number of clients alternatingly wait and execute trans-
actions against the database. The time spent waiting is
known as think time and models interactive clients interpret-
ing results. The concurrency level can be adjusted by either
fixing the number of clients and varying think time, or fixing
the think time and varying the number of clients. We find
both methods yield similar results. Throughout our experi-
ments we will fix think time at zero and vary the number of
clients. The only exception will be for TPC-C experiments,
where we will instead vary the think time and fix the num-
ber of clients at 300. We choose 300, because that allows
us to use think time to vary the number of running clients
both above and below the TPC-C-specified 100 clients. The
reason that we vary think time for TPC-C prioritization is
that the TPC-C clients can consume significant system re-
sources, and thus using a constant number of clients helps
reduce variability due to this overhead.

5.2. Definition of the Policies

Our scheduling policies are divided into lock scheduling
and CPU scheduling policies:

Lock scheduling policies. We first consider non-
preemptive lock scheduling policies, where lock holders
are never forced to release their locks abnormally due to
preemption. Subsequently, we consider preemptive poli-
cies, in which high-priority transactions can preempt low-
priority lock holders to acquire their locks. Preemption in-
volves aborting, rolling back, and resubmitting the transac-
tion, adding more work for the DBMS.

The simplest non-preemptive policy, NP-LQ, just re-
orders transactions waiting in the lock queue, and grants
locks to high-priority transactions before those of low-
priority. This policy has a problem: high-priority transac-
tions moved to the front of the queue must wait for low-
priority transactions already holding the lock to complete
(known as “excess time” in queueing theory). The case
where a high-priority transaction waits for a low-priority
transaction is commonly known as priority inversion. Two
techniques are commonly used to address the problem, pri-
ority inheritance [20] and preemption.
NP-LQ-Inherit is a non-preemptive policy that uses

priority inheritance to reduce excess times. The policy is
identical to NP-LQ, but the priority of each transaction is
raised to the highest priority of any transaction that waits
for it. Thus, high-priority transactions never wait for trans-
actions with priority lower than their own. The intended
result is that high-priority excess times are reduced, improv-
ing high-priority execution times.
P-LQ aims to reduce high-priority excess times by pre-

empting transactions currently holding locks needed by
high-priority transactions. The policy is identical to NP-
LQ, but when a high-priority transaction needs a lock held
by a low-priority transaction, the low-priority transaction is
aborted (known as preemptive abort). In practice, two fac-
tors reduce the effectiveness of preemption. First, the pre-
empting high-priority transaction must still wait for (part
of) the low-priority transaction rollback to complete before
continuing. Second, extra work created by preemption po-
tentially slows down other transactions.

CPU scheduling policies. Each of the DBMS considered
relies on approximations of (preemptive) generalized pro-
cessor sharing (GPS), and as a result we do not distinguish
preemptive or non-preemptive scheduling of the CPU de-
vice itself. We do, however, consider preemption of trans-
actions due to lock conflicts while using CPU prioritization.
We call CPU scheduling policies that preempt lock holders
preemptive, and those that do not non-preemptive.



The simplest policy, CPU-Prio, is a non-preemptive
policy that schedules the CPU using weighted GPS. It sim-
ply gives more weight to processes working on high-priority
transactions. Specifically, for PostgreSQL, we assign UNIX
priority nice level �

���
to high-priority processes and

� ���

to low-priority processes. For Shore, high-priority threads
get “time critical” priority, while low-priority transactions
get “regular” priority.

Although the CPU-Prio policy prioritizes CPU, the
policy may suffer from priority inversions due to locks.
A high-priority transaction with high CPU-priority cannot
progress if it waits for a lock held by a low-priority trans-
action. CPU-Prio-Inherit is a non-preemptive policy
that adds priority inheritance to the CPU-Prio policy. The
priority of low-priority transactions that block high-priority
transactions is raised, thus reducing high-priority excess
times.

The P-CPU policy is a preemptive policy identical to
CPU-Prio except that low-priority transactions that block
high-priority transactions are preempted and rolled back.

Organization of remaining sections. In Section 5.3 we
present results for simple scheduling policies without pre-
emption or priority inheritance: NP-LQ and CPU-Prio,
defined above. In Section 5.4, we examine policies with
priority inheritance: NP-LQ-Inherit and CPU-Prio-
Inherit. In Section 5.5, we discuss the preemptive poli-
cies P-LQ and P-CPU.

5.3. Simple Scheduling

The simple scheduling policies with no priority inheri-
tance and no lock preemption, NP-LQ and CPU-Prio, ex-
hibit striking differences depending on the workload and the
DBMS. Figures 4 and 5 highlight these differences, show-
ing the performance of high- and low-priority transactions
using the policies for TPC-C and TPC-W workloads respec-
tively. In all results, the concurrency varies on the X-axis,
from high levels of concurrency on the left to low concur-
rency on the right. Concurrency is controlled either by vary-
ing think time (for TPC-C) or, equivalently, by varying the
number of clients (for TPC-W).

The best simple scheduling policy for TPC-C depends
on the DBMS. For TPC-C running on Shore (see Fig-
ure 4(a)), CPU-Prio does not appreciably improve high-
priority transaction execution times. NP-LQ, on the other
hand, improves high-priority performance by 3.7 times.
The penalty to low-priority transactions under both NP-LQ
and CPU-Prio is small (less than 17% for NP-LQ) and
tracks the “Default” no-priority setting (see Figure 4(b)).
Lock scheduling is extremely effective for Shore because
locks dominate transaction execution times under 2PL.

By contrast, for PostgreSQL, lock scheduling is not as
effective as CPU scheduling (see Figure 4(c)). Under high
loads, NP-LQ improves high-priority execution times by a
factor of 1.3, whereas CPU-Prio improves them by a fac-
tor of 2. With both policies, low-priority transactions are not
significantly penalized (see Figure 4(d)). As the think time
increases from 5 to 25 seconds, concurrency decreases from
200 to 20 running (non-thinking) clients on average, and the
lock fraction of execution times becomes insignificant. As
expected, the result is that lock scheduling (NP-LQ) is not
very effective.

The effectiveness of CPU-Prio for TPC-C on
PostgreSQL is surprising, given that I/O (I/O-related
lightweight locks) is its bottleneck. Due to CPU prioriti-
zation, high-priority transactions are able to request I/O re-
sources before low-priority transactions can. As a result,
high-priority transactions wait fewer times (52% fewer) for
I/O, and when they do wait, they wait behind fewer transac-
tions (43% fewer). The fact that simple CPU prioritization
is able to improve performance so significantly suggests that
more complicated I/O scheduling is not always necessary.

For TPC-W, locks are never the bottleneck resource (see
Figure 2), suggesting lock scheduling will be ineffective.
As confirmation, Figure 5 shows average execution times
with NP-LQ and CPU-Prio for TPC-W as a function of
the number of clients. As expected, NP-LQ does not sig-
nificantly improve high-priority transactions. CPU-Prio,
however, dramatically improves high-priority transaction
times by a factor of up to 4.5 under high load (high num-
ber of clients) relative to a system with no priorities.

Low-priority transactions, on average, are not signifi-
cantly penalized by either NP-LQ or CPU-Prio, for all
DBMS and workloads studied. This result is important, and
consistent with theoretical results: Performance of a small
class of high-priority transactions can be improved without
harming the overall low-priority performance.

5.4. Priority Inheritance

In this section we evaluate the two policies using pri-
ority inheritance: NP-LQ-Inherit and CPU-Prio-
Inherit, which are extensions of the NP-LQ and CPU-
Prio policies, respectively.

Figure 6 compares the policies NP-LQ-Inherit and
NP-LQ for TPC-C running on Shore for a range of con-
currency levels. We find that adding priority inheritance
to simple lock queue reordering (NP-LQ) improves perfor-
mance by 30%. NP-LQ improves high-priority transaction
execution times by a factor of 3.7 relative to a system with-
out priorities, and NP-LQ-Inherit improves execution
times by a factor of 5.3.

For TPC-C running on PostgreSQL, adding priority in-
heritance to NP-LQ offers no appreciable gain in perfor-



0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

NP-LQ - HighPrio
CPU-Prio - HighPrio

No Priorities

(a) Shore High-Priority

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

NP-LQ - LowPrio
CPU-Prio - LowPrio

No Priorities

(b) Shore Low-Priority

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

NP-LQ - HighPrio
CPU-Prio - HighPrio

No Priorities

(c) PostgreSQL High-Priority

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

NP-LQ - LowPrio
CPU-Prio - LowPrio

No Priorities

(d) PostgreSQL Low-Priority

Figure 4. Mean execution times for NP-LQ compared to CPU-Prio for Shore and PostgreSQL TPC-C
with varying contention. Concurrency (load) increases to the left, as think time goes down.

mance, however, priority inheritance with CPU scheduling
is beneficial. Figure 7 shows CPU priority inheritance im-
proves high-priority transactions by a factor of 6, whereas
CPU-Prio only helps by a factor of 2. The significant im-
provement in performance is due to the fact that the lock
holder(s) are sped up, resulting in significantly smaller wait
excesses.

Recall from Section 5.3 that CPU scheduling (CPU-
Prio) is more effective than NP-LQ for TPC-W. Thus
Figure 8 compares the policies CPU-Prio-Inherit
to CPU-Prio for the TPC-W workload on PostgreSQL.
We find that there is no improvement for CPU-Prio-
Inherit over CPU-Prio. This is to be expected given
the low data contention found in the TPC-W workload; pri-
ority inversions can only occur during data contention. Re-
sults for low-priority transactions are not shown, but as in
Figure 4, low-priority transactions are only negligibly pe-
nalized on average.

5.5. Preemptive Scheduling

Non-preemptive scheduling already provides substantial
performance improvements for high-priority TPC-C trans-
actions, using lock scheduling for Shore and CPU schedul-
ing for PostgreSQL. We now focus on whether preemp-
tion can provide further benefits. In particular, we evaluate
whether P-LQ improves on NP-LQ for Shore and whether
P-CPU improves on CPU-Prio for PostgreSQL.

With non-preemptive scheduling, high-priority transac-
tions sometimes must wait on lock requests for locks cur-
rently held by low-priority transactions (the wait excess).
The wait excess time is reduced, but not eliminated, with
priority inheritance, which speeds up the low-priority trans-
actions blocking high-priority transactions. Preemptive
scheduling (P-LQ and P-CPU) attempts to eliminate the
wait excess for high-priority transactions by preempting
low-priority lock holders in the way of high-priority trans-
actions.

We find that preemptive policies provide little benefit



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

01020304050607080

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Number of Clients

NP-LQ - HighPrio
CPU-Prio - HighPrio

No Priorities

(a) PostgreSQL High-Priority

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01020304050607080

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Number of Clients

NP-LQ - LowPrio
CPU-Prio - LowPrio

No Priorities

(b) PostgreSQL Low-Priority

Figure 5. Mean execution times for NP-LQ compared to CPU-Prio for PostgreSQL TPC-W with varying
loads.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

NP-LQ - HighPrio
NP-LQ-Inherit - HighPrio

No Priorities

Figure 6. NP-LQ-Inherit compared to NP-
LQ for Shore TPC-C.

over non-preemptive policies. Figures 9(a) and 9(b) com-
pare the average high- and low-priority execution times
for P-LQ against NP-LQ-Inherit for TPC-C on Shore
as a function of think time. High-priority transactions
with P-LQ improve by a factor of 9.3 whereas NP-LQ-
Inherit helps only by a factor of 5.3. Low-priority trans-
actions, however, are slowed by a factor of 1.7, which is
excessive, making this policy impractical. Figures 9(c)
and 9(d) compare the performance of P-CPU to CPU-
Prio-Inherit for TPC-C on PostgreSQL. Preemption
seems to offer no significant benefit or penalty beyond
CPU-Prio-Inherit.

TPC-W results for P-LQ and P-CPU are omitted as lock
scheduling is ineffective since lock contention is low.

Future extensions to Preemptive Priorities. There are
two problems with preemption that limit its effectiveness in

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

CPU-Prio - HighPrio
CPU-Prio-Inherit - HighPrio

No Priorities

Figure 7. CPU-Prio-Inherit compared to
CPU-Prio on PostgreSQL TPC-C.

our experiments. First, the penalty to low-priority transac-
tions may be excessive. Second, the cost of waiting for a
transaction to complete may be cheaper than preemption.
As a result, there may be room for improvement in both
P-LQ and P-CPU.

We explore a few other preemptive policies that are more
selective about which transactions to preempt. These poli-
cies predict a victim transaction’s remaining life expectancy
and the cost of rolling back the victim to determine whether
to preempt or wait. The first idea is to use the number of
locks held by the victim to predict its remaining age. If it
holds many, it is almost finished, but if it holds few, it is just
starting. Second, we use the “wall-clock” age of the victim
as a predictor. Although preliminary, we find these are both
poor predictors of transaction life-expectancy. It is possible
that better predictors can be invented.



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01020304050607080

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Number of Clients

CPU-Prio - HighPrio
CPU-Prio-Inherit - HighPrio

No Priorities

Figure 8. CPU-Prio-Inherit compared to
CPU-Prio for TPC-W running on PostgreSQL.

6. Conclusion

In this paper we develop and evaluate an implementation
of transaction prioritization for differentiated performance
classes for TPC-C or TPC-W workloads running on tradi-
tional relational DBMS.

We first identify the bottleneck resource at which prior-
ity scheduling is most effective. We divide the lifetime of
a transaction into three components: CPU, I/O, and lock
wait times. The results are clearly differentiated by work-
load and concurrency control mechanism. Across a wide
range of configurations, the bottleneck for TPC-C running
on DBMS using 2PL (Shore and DB2) is lock waiting.
By contrast, the bottleneck for TPC-C running on MVCC
DBMS is I/O synchronization for low loads, although lock-
ing can dominate at extremely high concurrency levels. For
TPC-W workloads, CPU is always the bottleneck.

This bottleneck analysis provides a roadmap for which
resources must be scheduled to improve performance. In
this paper we focus on lock and CPU scheduling to directly
or indirectly schedule the bottleneck resource. We evalu-
ate the effectiveness of simple prioritization, priority inher-
itance, and preemptive abort scheduling, and the results are
broken down by workload and concurrency control mecha-
nism.

For TPC-C on 2PL DBMS (Shore), non-preemptive lock
scheduling with priority inheritance (NP-LQ-Inherit) is
most effective. For Shore, high-priority transaction execu-
tion times improve 5.3 times, while low-priority transac-
tions are hardly penalized. Priority inheritance and preemp-
tion do not appreciably help, and preemption excessively
penalizes low-priority transactions. By extension, we be-
lieve that these results will hold for IBM DB2 since it has a
similar resource breakdown to Shore.

For TPC-C on MVCC DBMS, and in particular Post-
greSQL, CPU scheduling is most effective, due to its abil-
ity to indirectly schedule the I/O bottleneck. For TPC-

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

NP-LQ-Inherit - HighPrio
P-LQ - HighPrio

Default

(a) Shore High-Priority

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

NP-LQ-Inherit - Low Prio
P-LQ - Low Prio

No Priorities

(b) Shore Low-Priority

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

CPU-Prio-Inherit - HighPrio
P-CPU - HighPrio

No Priorities

(c) PostgreSQL High-Priority

0

2

4

6

8

10

12

14

16

5 10 15 20 25

A
vg

 E
xe

c 
T

im
e 

(s
ec

)

Avg Think Time (sec)

CPU-Prio-Inherit - LowPrio
P-CPU - LowPrio

No Priorities

(d) PostgreSQL Low-Priority

Figure 9. Preemptive policies P-LQ and P-CPU
for Shore and PostgreSQL respectively, com-
pared to the best non-preemptive policies for
TPC-C.



C running on PostgreSQL, the simplest CPU scheduling
policy (CPU-Prio) provides a factor of 2 improvement
for high-priority transactions, while adding priority inheri-
tance (CPU-Prio-Inherit) provides a factor of 6 im-
provement while hardly penalizing low-priority transac-
tions. Preemption (P-CPU) provides no appreciable benefit
over CPU-Prio-Inherit.

For TPC-W on all DBMS, we find that lock schedul-
ing is largely ineffective since transactions rarely wait for
locks. CPU scheduling, however, is extremely effective.
For TPC-W running on PostgreSQL, we find that the sim-
plest scheduling policy, CPU-Prio, is best, and improves
performance for high-priority transactions by a factor of up
to 4.5. Priority inheritance is not necessary since data con-
tention for TPC-W is almost non-existent.

In conclusion, our results suggest that (i) knowledge of
the bottleneck resources is important for determining the
best scheduling policies, and (ii) priority scheduling at the
bottleneck resource using simple policies can yield signifi-
cant performance improvements for both TPC-C and TPC-
W workloads on real general-purpose DBMS.

References

[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-
time transactions. In Proceedings of SIGMOD, pages
71–81, 1988.

[2] R. K. Abbott and H. Garcia-Molina. Scheduling real-
time transactions: A performance evaluation. In Pro-
ceedings of Very Large Database Conference, pages
1–12, 1988.

[3] R. K. Abbott and H. Garcia-Molina. Scheduling real-
time transactions with disk resident data. In Proceed-
ings of Very Large Database Conference, pages 385–
396, 1989.

[4] R. K. Abbott and H. Garcia-Molina. Scheduling I/O
requests with deadlines: A performance evaluation. In
IEEE Real-Time Systems Symposium, pages 113–125,
1990.

[5] R. K. Abbott and H. Garcia-Molina. Scheduling real-
time transactions: A performance evaluation. Trans-
actions on Database Systems, 17(3):513–560, 1992.

[6] Philip A. Bernstein and Nathan Goodman. Multi-
version concurrency control - theory and algorithms.
TODS, 8(4):465–483, 1983.

[7] K. P. Brown, M. J. Carey, and M. Livny. Managing
memory to meet multiclass workload response time
goals. In Proceedings of Very Large Database Con-
ference, pages 328–341, 1993.

[8] Trey Cain, Milo Martin, Tim Heil, Eric Weglarz,
and Todd Bezenek. Java TPC-W implementation.
http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2000.

[9] M. J. Carey, R. Jauhari, and M. Livny. Priority in
DBMS resource scheduling. In Proceedings of Very
Large Database Conference, pages 397–410, 1989.

[10] IBM Corporation. IBM DB2 query patroller adminis-
tration guide version 7.0, 2000.

[11] Transaction Processing Performance Council. TPC
benchmark C. Number Revision 5.1.0, December
2002.

[12] Transaction Processing Performance Council. TPC
benchmark W (web commerce). Number Revision
1.8, February 2002.

[13] Sameh Elnitky, Erich M. Nahum, John Tracey, and
Willy Zwaenepoel. A method for transparent admis-
sion control and request scheduling in dynamic e-
commerce web sites. Unpublished Manuscript, May
2003.

[14] J. Huang, J.A. Stankovic, K. Ramamritham, and D. F
Towsley. On using priority inheritance in real-time
databases. In IEEE Real-Time Systems Symposium,
pages 210–221, 1991.

[15] K. D. Kang, Sang H. Son, and John A. Stankovic.
Service differentiation in real-time main memory
databases. In Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Comput-
ing, 29 2002.

[16] IBM Toronto Lab. IBM DB2 universal database ad-
ministration guide version 5. Document Number
S10J-8157-00, 1997.

[17] University of Wisconsin. Shore - a high-
performance, scalable, persistent object repository.
http://www.cs.wisc.edu/shore/.

[18] PostgreSQL. http://www.postgresql.org.

[19] Ann Rhee, Sumanta Chatterjee, and Tirthankar Lahiri.
The Oracle database resource manager: Scheduling
CPU resources at the application. High Performance
Transaction Systems Workshop, 2001.

[20] L. Sha, R. Rajkumar, and J. Lehozky. Priority in-
heritance protocols: An approach to real-time syn-
chronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[21] John A. Stankovic, Sang Hyuk Son, and Jorgen Hans-
son. Misconceptions about real-time databases. IEEE
Computer, 32(6):29–36, 1999.


