CSC 2232: Topics in Computer System Performance and Reliability

Bianca Schroeder

Department of Computer Science
University of Toronto
WHO AM I
WHAT IS THIS CLASS ABOUT?

System performance & reliability

- Is one fast server better or two slow servers?
- How many data replicas do I need for reliability?
- How do I generate/simulate realistic workloads?
- What is the impact of workload characteristics?

⇒ Methods, tools, back-of-the-envelope calculations for system evaluation, simulation & measurement.
⇒ Study of recent papers in the area.
LOGISTICS

• Class time: Friday 11am-1pm
 • Can we move to Wed 2-4pm
 – Does anybody have serious scheduling conflicts?

• Office hours: Wed 4-5pm
 – Plus open door policy

• Class web page
GRADING

• 30% class participation
 – Participating in class discussion
 – Class presentation of at least one research paper

• 70% class project
 – I will suggest possible projects
 – You can propose your own
 – Final results: Conference style paper

• No exams!
OUTLINE

• Administrivia ✔
• Motivating examples
• Questionnaire
System design is often a counter-intuitive process.

Do not expect to understand everything in the examples.

Don’t worry if you’re not familiar with all terminology.

Ask questions!
• **Question**: Assume the arrival rate doubles. By how much do you have to increase CPU speed to keep mean response times the same?

• Does the answer change with PS scheduling instead of FCFS?
EXAMPLE 2

N = 6

Rate per server: 1/3 jobs / sec

• Question: Server 1 is replaced with a server twice as fast.
• Does this change affect mean response time?
• Does this change affect throughput?
• **Question**: Which of the following changes is most effective in increasing throughput?

 • Replace CPU with one twice as fast?
 • Balance load between fast & slow disk?
 • Buy second fast disk?
EXAMPLE 3

Question: Which of the following changes is most effective in increasing throughput?

- Replace CPU with one twice as fast?
- Balance load between fast & slow disk?
- Buy second fast disk?

Measurements:
- time each device is busy
- number of completions per device
- total number completions
- mean “think time” between sending jobs
EXAMPLE 3

• We can solve this problem with simple back-of-the-envelope bound analysis
 • No math is necessary!
 • No assumptions on distributions
 • No knowledge of full network topology necessary
EXAMPLE 4

• **Question:** Which job is closer to completion, job 1 or job 2?
EXAMPLE 5

$\$\$\$\$
New job

Srv 1
Has been running non-stop for 1 year

Srv 2
Has just crashed and been fixed yesterday

• **Question**: Which server will fail first?
EXAMPLE 6

Jobs arrive (Poisson) CPU

- **Question:** Which non-preemptive service order will result in lowest mean response time:
 - FCFS
 - LCFS = Last-Come-First-Serve
 - Random
SOME EXAMPLES FROM MY OWN RESEARCH
Probability of losing data in a RAID?

- Depends on probability that after one drive fails, a second drive fails while reconstructing data.
Estimating probability of data loss

- Need probability of second failure during reconstruction

Standard approach: Use datasheet MTTF and exponential distr.
Estimating probability of data loss

- Need probability of second failure during reconstruction

Standard approach: Use datasheet MTTF and exponential distr.

Estimate based on data
Estimating probability of data loss

- Need probability of second failure during reconstruction

- **Standard approach:** Use datasheet MTTF and exponential distr.

- Use measured MTTF and exponential distribution

- Estimate based on data

![Probability Graph](image-url)
Estimating probability of data loss

- Need probability of second failure during reconstruction

- Standard approach: Use datasheet MTTF and exponential distr.
- Use measured MTTF and exponential distribution
- Use measured MTTF and Weibull distribution
- Estimate based on data

![Bar chart showing probability distribution](chart.png)
Estimating probability of data loss

- Need probability of second failure during reconstruction

- **Standard approach:** Use datasheet MTTF and exponential distr.
- Use measured MTTF and exponential distribution
- Use measured MTTF and Weibull distribution
- Estimate based on data

![Graph showing probability of data loss over different reconstruction times.](attachment:graph.png)
EXAMPLE 2
SCHEDULING STATIC WEB REQUESTS

PS (timesharing)

Socket 1
Socket 2
Socket 3

Standard web server

SRPT (shortest-remaining-time)

Socket 1
Socket 2
Socket 3

SRPT web server
(kernel-level Implementation)

Size-based scheduling for better response times.

Socket 1
Socket 2
Socket 3

S
M
L

24
STATIC WEB WORKLOAD
APACHE/LINUX

Workload generator 1

response time (ms)

0 0.25 0.5 0.75 1

load

Workload generator 2

Tuning knob
- Request rate

Tuning knob
- Number of users
- Think time

WHY?
- Mean file size
- File size distribution
- Access pattern
- Request rate
- CPU utilization
- Bandwidth
- Network effects

ALL THE SAME!
DATABASE BACKEND OF E-COMMERCE SITE

Web server

App server

Database (PostgreSQL)

TPC-W generator X

TPC-W generator Y

Tuning knob - Request rate

Tuning knob - Number of users

Tuning knob - Think time

response time (sec)
ONLINE AUCTION SITE – SIMULATION

• Based on trace from top-10 online auctioning site.
BATCH JOBS AT A SUPERCOMPUTING SITE

- Simulation based on trace from Pittsburgh Supercomputing Center.

Cray J90/C90

FCFS

Simulator A

Tuning knob
- Request rate

Simulator B

Tuning knob
- Number of users
- Think time

1000 clnt.
100 clnt.
10 clnt.
STATIC WEB

DATABASE BACKEND

ONLINE AUCTION

SUPER-COMPUTING

OPEN

Tuning knob
- Request rate

CLOSED

Tuning knob
- Number of users
- Think time
CLOSED SYSTEM MODEL

- **Model of user behavior**

User requests web page, receives page, reads page, clicks on new link

- **Fixed number of users, called the Multi-Programming-Level (MPL)**

- **Arrivals triggered by completions.**
• There is no max number of simultaneous users

• Arrivals are independent of completions

Trace / probability distribution → arrival times

next arrival time from trace

→ new arrivals

→ server
Which Model Do Workload Generators Use?

WEB WORKLOAD GENERATORS

- Generators for same purpose use different models!
- Often not clear which model generators use!

- Surge
- SPECWeb
- TPC-W
- Soliant
- RUBiS
- WebBench
- Webjamma

OPEN MODEL

CLOSED MODEL
WHAT IS KNOWN IN THE LITERATURE?

• Very little …

• Limited to FCFS single server queue.
 – Response times under open system higher than under closed [Bondi and Whitt 1986].
 – For MPL \(\rightarrow \infty \), closed system converges to open system [Schatte83, Schatte84].
STILL UNANSWERED:

– What is the **magnitude** in difference of response times?
– What is the **speed** of convergence?
– How does **variability** (heavy tails) affect results?
– How are different **scheduling** disciplines affected?
– …. in practice?
PRINCIPLES FOR OPEN VS. CLOSED

• What is the magnitude in difference of response times?
 – Orders of magnitude!

• Why?
 – Bounded number of jobs in closed system.
PRINCIPLES FOR OPEN VS. CLOSED

• How does variability affect open/closed response times?
 – Huge effect on open, limited effect on closed system.

• Why?
 – Dependency between completions and arrivals in closed system reduces burstiness.
• Can we make closed look like open, by increasing MPL?

![Graph showing mean response time for open and closed systems with varying MPL values.](image)

- Closed (MPL=50)
- Closed (MPL=100)
- Closed (MPL=500)

low variability high variability

Web Workloads
PRINCIPLES FOR OPEN VS. CLOSED

• What is the impact of scheduling?
 – Huge in open system, almost none in closed system.

• Why?
 – *Scheduling takes advantage of variability in the system.*
 – *Closed systems reduce the effect of variability.*