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Abstract
We present a novel statistical analysis of color categorization
using a standard method from semantic typology. Our ap-
proach shows that crosslinguistic color naming data exhibits
latent dimensions whose order of relative importance matches
the evolutionary ordering of emergence of those distinctions.
Moreover, we show that the importance ordering of these di-
mensions holds even when controlling for frequency of the dis-
tinctions by looking at languages within each stage of evolu-
tion. Additionally, we find that the extreme points of the latent
color dimensions correspond well to a small set of “univer-
sal” focal colors. Thus we show that a simple mathematical
method simultaneously derives a consistent match both to the
evolutionary stages and to the universal foci.
Keywords: semantic universals; color naming; color evolu-
tion.

Introduction
Much work in cognitive science seeks to uncover the basis
of human categorization of the world. Semantic typology
in particular aims to discover crosslinguistic constraints and
tendencies in the ways that lexical semantic systems parcel
concepts into named categories. Research across a number
of diverse domains – from color to spatial relations to cut-
ting and breaking events (e.g., Berlin & Kay, 1969; Levinson
et al., 2003; Majid et al., 2008) – have revealed seemingly
universal dimensions that underlie the organization of such
lexical categories. For example, there is substantial evidence
that color lexicons are organized around a universal set of ba-
sic color categories, whose best exemplars – focal colors, or
foci – are clustered within small areas of the perceptual color
space (e.g., Berlin & Kay, 1969; Regier et al., 2005; though
see, e.g., Roberson et al., 2000, for an alternative view).

The domain of color has been particularly fruitful in re-
vealing such crosslinguistic commonalities. Indeed, research
on color is unusual (if not unique) in semantic typology in
having revealed another kind of universal as well – that of
evolutionary stages of a domain-specific lexicon. Berlin &
Kay (1969) proposed that, as the number of basic color terms
increase in a language, the named color distinctions emerge
in one of a small set of constrained orders; for example, sep-
arate terms for yellow and red appear in a language before
green is split off from blue. This line of work has been ex-
tended to cover a broad range of data from many languages,
and the specific proposal refined and adapted. While some
counterexamples have been identified, and it has been recog-
nized that some languages do not exhaustively partition the

Figure 1: Evolutionary chart from Kay et al. (2009).
W=white, R=red, Y=yellow, Bk=black, G=green, Bu=Blue.

color spectrum, most extant languages largely follow a suc-
cessive partitioning of the color space according to universal
principles (see Kay et al., 2009, for a review).

Most evolutionary proposals focus on a core set of basic
color categories, corresponding to the English terms white,
red, yellow, black, green, and blue, because these ‘primary
colors’ follow a consistent evolutionary path (Kay et al.,
2009). Fig. 1 illustrates an influential proposal regarding the
evolutionary sequence of languages, which we follow here.
This diagram says that languages with only two color terms
(Stage I) allocate those to the distinction between warm col-
ors (White/Red/Yellow) and cool colors (Black/Green/Blue),
while languages with three colors (Stage II) further dis-
tinguish White from Red/Yellow. Languages at Stages III
through V can follow multiple pathways, depending on the
further splits of Red, Yellow, Black, Green, and Blue.

Although modeling of crosslinguistic color data has re-
vealed evidence of the various stages in Fig. 1 (e.g., Regier
et al., 2007; Lindsey & Brown, 2009; Jäger, 2012), to our
knowledge such work has not (yet) shown how the ordering
of such stages could be derived from synchronic color nam-
ing data alone. Moreover, work on the evolutionary stages
has typically focused on the partitioning of the space, and has
not linked those stages to the nature and role of focal colors.
That is, we know of no single model or method of analysis
over the crosslinguistic color data that has derived both a con-
sistent match to the evolutionary stages and to the universal
focal areas, showing if or how these two concepts are linked.

Here we show that a standard analysis method from seman-
tic typology, which has been used in work on color as well as
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Figure 2: Munsell chart; universal foci (Regier et al., 2005)

in various other semantic domains, can simultaneously derive
both the ordering of the evolutionary stages and the universal
focal colors, revealing the latter as the drivers of the evolu-
tionary distinctions. To preview our results, we use a simple
statistical method to identify the important dimensions of the
semantic space of color as represented by the crosslinguis-
tic data. We find that the extremes of the identified dimen-
sions correspond to focal areas of color, and, crucially, that
the importance ordering of the dimensions corresponds to the
evolutionary ordering of color distinctions. In addition, we
perform the first analysis of subsets of languages at different
evolutionary stages, and show that this importance ordering is
not simply a by-product of the frequency of color distinctions
in a mixed set of languages. We thus provide quantitative
confirmation that synchronic color naming patterns reveal an
underlying semantic space whose dimensional salience mir-
rors the evolutionary stages, with “anchors” in focal colors.

Color Data, Foci, and Evolutionary Stages
The World Color Survey (WCS; Kay et al., 2009,
http://www.icsi.berkeley.edu/wcs/data.html) is a rich data set,
along with a comprehensive qualitative analysis, that under-
lies much crosslinguistic analysis of color categories. Speak-
ers of 110 diverse languages were surveyed, and languages
were manually assigned to an evolutionary stage or transition
between stages (cf. Fig. 1). The WCS contains two types of
data. First, naming data was gathered by asking speakers to
provide a single color term for each of the 330 color chips
in the Munsell chart (see Fig. 2). Second, focal data was
collected by asking speakers to select the most representative
example, or focal color, of each term.

Both the focal and naming data of the WCS have played
a prominent role in semantic typological analyses of color,
which seek to derive semantic universals from crosslinguistic
usage data. In particular, a body of work has attempted to
go beyond qualitative analyses to provide precise mathemat-
ical underpinnings for such universals. Our work is in this
vein, and we review related research below. Other quantita-
tive analyses have attempted to link the semantic universals
apparent from the WCS data to perceptual and/or commu-
nicative aspects of cognition. This is not the goal of our work
here, but we refer to such research where relevant.

It is a striking finding that the distributions of the focal col-
ors across all of the WCS languages cluster in small areas of
the color space, corresponding to the six basic English focal
colors, white, red, yellow, black, green, and blue (MacLaury,
1997; Regier et al., 2005; Lindsey & Brown, 2006, see Fig. 2).
Some claim that these “universal” focal colors are cognitively
privileged areas of the mental representation of color (Heider,

1972; Regier et al., 2005), which play a crucial role in the evo-
lution of color systems (Berlin & Kay, 1969); others propose
that they are only epiphenomena of the desired placement of
color category boundaries (Roberson et al., 2000).

In their perceptual account, Jameson & D’Andrade (1997)
suggest a middle ground in which the focal colors arise
due to the nature of categorization in an irregular perceptual
space. Abbott et al. (2012) operationalize this approach using
Bayesian inference over perceptual color categories whose
extents are determined by the WCS naming data. They find
a good match between the representative members of these
named color categories and the WCS focal data. This sug-
gests that foci may be derivative from color categories whose
optimal boundaries are driven by universal properties of the
perceptual space (e.g., Jameson & D’Andrade, 1997; Regier
et al., 2007). However, the relation of such foci to the evolu-
tionary distinctions among colors is not clear.

The WCS data has also been explored as a source of in-
sight into the evolutionary stages of color term systems, as
exemplified in Fig. 1. Lindsey & Brown (2006, 2009) apply
clustering techniques over naming patterns to reveal univer-
sal constraints over color categories, as well as color nam-
ing “motifs” (ways of partitioning the color space), some
of which correspond to stages in the evolutionary hierarchy.
Jäger (2012) takes a complex, multi-step approach to apply-
ing PCA to the WCS naming data, after transforming it in
various ways. He derives partitionings of the six basic col-
ors, many (but not all) of which match those of the evolu-
tionary stages. While these approaches use quantitative anal-
yses of the WCS to derive aspects of the evolutionary parti-
tions, none of them derives an ordering over the partitions.
(Indeed, Lindsey & Brown (2006) explicitly note that their
work should not be interpreted as evidence of evolutionary
sequencing from synchronic data.)

By contrast, Zaslavsky et al. (2018) combine WCS naming
data with a perceptual semantics to derive an order over the
emergence of color categories. They assume that color cate-
gories are created to optimally balance lexical accuracy with
the size of the lexicon. As more color categories are added,
their emergence roughly reflects the ordering of categories in
color evolution. However, the reliance on perceptual salience
leads to some mismatches with the evolutionary stages (over-
estimating the prominence of yellow), and the method does
not address the role of focal colors in the ordering.

The wealth of research analyzing the WCS motivates our
exploration of whether this rich synchronic color naming data
can directly reveal patterns of evolutionary development, and
shed light on the role of focal colors in those stages. We
aim for a mathematical method of analysis that is simple
and straightforward, with the intention that such an approach
would be readily applicable to other semantic domains.

Our Approach
The approach we take in this work complements and seeks to
fill in some of the gaps noted in the above body of research.
Our goal is to derive the evolutionary sequence from WCS
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data using a simple mathematical method – Principal Com-
ponent Analysis (PCA) – that (along with other dimension-
ality reduction techniques) has been widely deployed in se-
mantic typology, in diverse semantic domains including color
(e.g., Majid et al., 2008; Jäger, 2012; Beekhuizen et al., 2014;
Beekhuizen & Stevenson, 2018).

The novelty of our approach is two-fold. First, we extract
latent dimensions of the WCS data in order of importance,
yielding the first quantitative evidence of the evolutionary
progression of color naming from the synchronic data. Sec-
ond, we propose a natural interpretation of the “extremes”
of the extracted dimensions as focal areas of color, which in-
deed show a strong match to empirical foci. Thus, we achieve
a simultaneous match of the evolutionary ordering and the fo-
cal colors, which has not been shown before. Moreover, we
do so with a very simple and straightforward use of PCA, in
contrast to other methods that require much more involved
mathematical transformations of the data (as in Jäger, 2012).

Our motivation is as follows. If most languages have
followed a consistent and small set of orderings in the
diachronic emergence of colors, those orderings must be
determined by the relative importance of various per-
ceptual/behavioral/cultural/communicative influences (e.g.,
Jameson & D’Andrade, 1997; Kay et al., 2009; Gibson et al.,
2017; Holmes & Regier, 2017; Zaslavsky et al., 2018). Re-
gardless of the source of these influences, if they play a role in
the evolution of color systems, they may impact synchronic
use of color terminology, and with the same relative impor-
tance. Note that this is not necessarily the case; for example,
just because a language at Stage V has gone through Stages I
through IV does not mean that the current color naming pat-
terns of that language will reflect that a distinction made in an
earlier stage (e.g., of Red vs. Yellow) is more important than
a final distinction made in Stage V (e.g., of Green vs. Blue).
That is, it is an open question whether the factors that exert
evolutionary pressure to create new terms play a role in how
terms are deployed in synchronic naming.

Experimental studies suggest that it may indeed be the case
that evolutionary factors play a role in cognitive processing
of colors by individuals. For example, Holmes & Regier
(2017) found that English speakers show a categorical per-
ception effect for the warm–cool distinction of Stage I, even
though “warm” and “cool” are not basic color terms in En-
glish. Moreover, when English speakers group colors into K
categories, the divisions they make roughly follow the evo-
lutionary splits – i.e., with K = 2, they select a warm–cool
separation, as in Stage I of evolution, with K = 3 they add a
further distinction of white as in Stage II, etc. (Boster, 1986;
Xu et al., 2013). Thus, English speakers are apparently sen-
sitive to the evolutionary factors – and their relative ordering
of importance – in color category processing.

Our goal here is to see whether actual color naming behav-
ior, across the many diverse languages of the WCS, show this
synchronic realization of the evolutionary influences. Specif-
ically, given a suitable representation of the semantic space of

synchronic color naming patterns, we use PCA over this data
to extract dimensions of the data in order of importance, and
examine whether those dimensions and their relative impor-
tance match the evolutionary stages proposed in the literature.

As a suitable representation of the color naming data, we
follow a straightforward and standard practice in semantic ty-
pology. Specifically, we create a color chip by color term ma-
trix using the color naming data from the WCS (Beekhuizen
& Stevenson, 2018). Intuitively, such a matrix forms a se-
mantic space over color, where each row can be viewed as a
vector representation of the meaning of a color chip, as deter-
mined by the aggregate naming patterns in the data.

Applying PCA to such a matrix finds the latent dimen-
sions characterizing the semantics of color across languages.
Moreover, we take advantage of the interpretability of PCA
dimensions, which means that points with a minimum or
maximum value for a dimension are the most “extreme” ex-
ample of the property that that dimension captures. Such
points represent the “corners” of the data in the space (cf.
Fig. 3), which are an indication of the key distinction each
dimension is enforcing. We can thus examine these extremes
to see if they correspond to the focal colors that have been
proposed to “anchor” color categories (Regier et al., 2005).

Methods
Data matrices and PCA. We first create a color chip by
term matrix over the naming data. Each cell records the (nor-
malized) number of speakers in a language that used that term
for that chip. This matrix compiles the naming data from all
or selected subsets of languages in the WCS (as noted below).
Thus we create matrices with 330 rows (one per chip in the
Munsell chart) and up to 2223 columns (the number of color
terms across all WCS languages).

We apply PCA to the resulting matrices to extract the most
important dimensions. PCA identifies dimensions in the or-
der along which the data shows the most variance, so the
amount of variance accounted for represents the importance
of that dimension. As we are looking for important dimen-
sions that could relate to evolutionary development, we only
consider dimensions that account for at least 5% of the vari-
ance in the data. (In almost all cases, this corresponded to a
natural dropping off point in the accounted-for variance.)

For the first three such dimensions, we can plot the data for
visualization purposes; i.e., we can plot the 330 color chips
as represented by the first dimension of the PCA, by the first
two, or by the first three. As shown in Fig. 3, such plots reveal
the structure in the data that the PCA finds.
Determining the extreme points. To better understand the
dimensions extracted by the PCA, we want to identify the ex-
treme points of each. Conceptually, these are the maximally
distinguishable points in the data on that dimension; in our
visualizations in Fig. 3, these correspond to the endpoints or
“corners” of the plotted data. In Fig. 3, the extreme points in
1D correspond to the minimum and maximum values on the
x axis; the extreme points in 2D correspond to the corners of
a triangle; the extreme points in 3D are the top of the pyramid
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and the corners of its triangular base. As we will see in the
results, such points generally correspond to focal colors.

We first collect the minimum and maximum points per di-
mension. However, because points can be tightly clustered at
a “corner” of the space, we can end up with multiple extreme
points when there is really only one “corner”. For example, in
the 2D plot in Fig. 3 (middle panel), the bottom right corner
of the triangle is near the maximum for the x dimension and
the minimum for the y dimension, so we might find two dis-
tinct points in that same small area. To avoid this, we consider
all pairwise combinations of extreme points and merge those
that are likely referring to the same “corners” of the space.
Extreme points are considered to refer to the same “corner”
if there is overlap in their n = 15 nearest neighbors, based on
Euclidean distance. (We tried other values of n, which made
little difference in the pattern of results.)

Figure 3: Plots of the 330 color chips in the 1D, 2D, and 3D
PCA subspaces of the full WCS.
Visualizations of results. The results of our PCA analy-
sis are a sequence of semantic subspaces defined by the ex-
tracted dimensions – the first (1D), the first+the second (2D),
the first+the second+the third (3D), etc. – and the points that
indicate the extreme “corners” of each subspace. To visually
show the results, we plot the extreme points of each subspace
(as triangles; or as diamonds for the merged points) in a Mun-
sell chart, along with their closest neighbors (as circles whose
size reflects their distance from the extreme point). These
extreme point areas show the important color prototypes for
each of the components of the PCA.

In addition, we visualize the extreme points as partition-
ing the PCA subspace, such that every color chip is allocated

to the region of the space of its nearest extreme point. This
yields a partitioned Munsell chart, with the number of par-
titions equal to the number of (merged) extreme points, or
“corners”, in the space. We label these partitions by the fo-
cal colors (green squares in the charts) occurring within them,
whether they are extreme points or not. Thus each of the six
focal colors is allocated to the region of its nearest extreme
point, and we label a region by the focal colors it includes.

Fig. 4 shows examples of this visualization. For example,
the White, Red, and Green extreme points shown in Fig. 4b
for 2D correspond to the white, red, and green “corners” of
the PCA plot for 2D shown in Fig. 3. The labels W, R/Y, and
Bk/G/Bu correspond to the focal colors within each region as
partitioned by the extreme points.

Analysis Over All WCS Languages
Using the methods above, our goal is to see whether a simple
and straightforward application of PCA over the WCS nam-
ing data can simultaneously derive both the ordering of the
evolutionary stages, as in Fig. 1, and the location of the uni-
versal foci, as in Fig. 2.
Results. We first apply our method over the full WCS color
naming data. The first five extracted dimensions each account
for more than 5% of the variance in the data; the results on
the corresponding 1D–5D subspaces are in Fig. 4(a–e).

First, note that all of the primary extreme points for all di-
mensions of the PCA occur very close to the universal focal
points of the 6 basic colors; see the triangles in Fig. 4. The
extreme points corresponding to White, Black, and Green oc-
cur at the focus, Yellow and Blue adjacent to the focus, and
Red two away from the focus. Fig. 4(f) shows the close match
between our predicted focal colors and those of Abbott et al.
(2012), who draw on both the color naming data and a rep-
resentation of the named categories in perceptual space. It is
important to emphasize that (as in Abbott et al., 2012) our re-
sults do not make use of the WCS focal color data, but only
naming data. Given evidence for the universality of the fo-
cal colors as “anchors” for language-dependent naming of
color regions, our results suggest that the extreme points of
our PCA space are indeed meaningful in reflecting the im-
portant dimensions of color term systems in the WCS.

Second, and crucially, the importance ranking of dimen-
sions in this all-languages data set shows a very strong match
to the ordering of the evolutionary stages of Fig. 1, as indi-
cated in the caption below each chart in Fig. 4(a–e). This
is the first mathematical demonstration that synchronic color
naming patterns reflect the relative importance of latent color
dimensions that also underlie their evolutionary emergence.
Discussion. We have shown that a straightforward appli-
cation of PCA over the WCS yields dimensions of the color
naming data whose maximal/minimal values correspond to
focal regions of color. That is, the universal foci appear to
organize the dimensions along which the data shows the most
variance. Moreover, these dimensions are extracted in the
order of importance of the evolutionary distinctions among
color terms, confirming that naming patterns in the WCS col-

3074



(a) 1D: W/R/Y, Bk/G/Bu (Stage I)

(b) 2D: W, R/Y, Bk/G/Bu (Stage II)

(c) 3D: W, R, Y, Bk/G/Bu (Stage III-Bk/G/Bu)

(d) 4D: W, R, Y, Bk, G/Bu (Stage IV-G/Bu)

(e) 5D: W, R, Y, Bk, G, Bu (Stage V)

(f) Foci at 5D compared to those of Abbott et al. (2012)

Figure 4: Focal colors and associated regions from a PCA
over all WCS data. (a–e) Results over each subspace for
the first n dimensions; triangles = extreme points, circles =
nearest neighbors, diamonds = merged extreme points, green
borders = universal foci. Color labels below each chart cor-
respond to the focal colors in each region, with the matching
evolutionary stage indicated. (f) Foci in 5D, with our extreme
points shown as triangles and the predicted foci of Abbott et
al. (2012) as large circles.

lectively exhibit the synchronic influence of the evolutionary
factors that shape the progression of color systems.

A legitimate question is whether our finding is simply the
expected result of doing PCA over language data that in-
cludes languages at all the stages. Specifically, is it a sim-
ple frequency effect? That is, if languages at different stages
are simply successively partitioning the data (rather than re-

organizing colors in a way that changes earlier boundaries),
then all languages have some boundary between warm and
cool colors, all but Stage I languages have an additional
boundary between white and the other warm colors, all but
Stage I and II languages have another boundary between two
more colors, etc. Thus, the PCA may be finding boundaries
based on their frequency across languages at the different
stages, rather than based on a true importance ordering.

A crucial observation that argues against this view is that
the WCS contains no Stage I languages, and yet the warm–
cool split of Stage I emerges as the first dimension in impor-
tance. That is: Although all languages in the WCS make
both the warm–cool distinction of Stage I and the White–
Red/Yellow distinction of Stage II, the warm–cool distinction
emerges first in the PCA. This suggests that there is a de-
tectable signal in the naming patterns that reveals the relative
importance of an evolutionarily-earlier boundary over a later
boundary, independently of their frequency in the data. To
test this more directly, and across more stages, we next look
at subsets of the languages of the WCS grouped by stage.

Analysis Over WCS Languages By Stage
We hypothesize that languages at each stage will show the
same importance ranking of dimensions as found in the evo-
lutionary progression, up to and including that stage. The
set up here ensures that if we find that languages show
evolutionarily-earlier distinctions as more important than
later ones, this cannot be explained away as the data including
languages at those earlier stages, thus skewing the frequen-
cies toward the earlier distinctions.
Set up. In this analysis, we separately consider subsets of
languages of the WCS that are in a single one of the identified
evolutionary stages (Kay et al., 2009), yielding 7, 7, 41, and
14 languages at Stages II, III, IV, and V, respectively. (There
are few documented Stage I languages, and none in the WCS.
Also, we omit languages transitioning between stages, since
they can show blends of behavior.) We perform the same PCA
analysis as above, once over each of the four naming matrices
limited to each stage, with the goal of seeing whether there
is a match between the successive dimensions of each PCA
analysis and the evolutionary stages.
Results. Tab. 1 presents the sequences of evolutionary
stages revealed in the analysis of the subsets of languages by
stage (omitting Stage V for space reasons). The table sum-
marizes the color partitions in each subspace using the focal
colors in each (we omit Munsell charts due to space reasons),
and shows the best-matching stage from Fig. 1. (All and only
dimensions accounting for > 5% of variance shown.)

Overall, the results confirm our hypothesis above: we find
a very good match between the PCA analysis and the evolu-
tionary diagram from all sets of languages, except those in
Stage V. It is also the case that the majority of extreme points
found in all the relevant dimensions of the four PCA analyses
are at or very near focal colors. To summarize:
• All of Stages II, III, and IV show a very strong match to
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Table 1: Sequences of focal colors in the Stages data.

the evolutionary stages.
• Stage III has, in addition to predicted extreme colors, a

rainbow-like extreme area along the warm–cool boundary.
• Stage IV mostly matches the evolutionary stages, but with

Yellow and Black connected through Brown in earlier di-
mensions. At 4D, there is a precise match to Stage IV.

• Stage V does not yield an ordering of dimensions that
match the evolutionary stages. At 6D, all basic focal colors
plus Purple have emerged as extreme regions.
Stage III data include languages from different sub-stages

(column III in Fig. 1). Follow-up experiments with various
subsets of Stage III languages reveal that the observed bound-
ary color appears due to varying ways the different sub-stages
divide up the G/Bu/Y region of color, in combination with the
fact that one of the languages has an unusual basic color term
for this warm–cool boundary region (Kay et al., 2009).

Stage V is a heterogeneous group, with languages having
the 6 basic colors plus some number of other derived colors
(13 of 14 have at least one derived color). We hypothesized
that the variety in naming patterns for the non-basic colors
may be swamping the signal from the basic colors. This may
indicate a limitation of our method in dealing with a larger
number of dimensions of color distinction. To test this, we
performed the same PCA analysis over the 8 languages de-
noted as approaching Stage V (which have fewer derived col-
ors). Here, the dimensions of the data emerged in order of the
evolutionary stages, including the final stage at which Blue is
distinguished from Green.
Discussion. To our knowledge, we are the first to apply a
quantitative typological analysis to the languages of the WCS
at the various evolutionary stages, as manually analyzed in
Kay et al. (2009). Our findings provide strong support for
the hypothesis that data from later stage languages can have
structure that matches the evolutionary order of earlier stages.
By separately analyzing languages at each specific evolution-
ary stage, we control for the potential frequency explanation
of our results on the full WCS data set.

Further work will be required to determine the underly-
ing causes of the cases of mismatches to the stages. Others
have found, using more complex procedures, that the WCS
data yield color groupings that largely, but not always, corre-
spond to the manually derived partitionings of the color space
(Lindsey & Brown, 2009; Jäger, 2012). Our method may be
picking up on idiosyncratic patterns of naming, especially on
smaller data sets. Regarding the Stage V data in particular,
a possible shortcoming of our method is that it may not be
sensitive enough to capture regularities beyond the six basic
focal colors, which would be necessary to analyze this het-
erogeneous set of languages.

Conclusions

We present the first statistical analysis of color naming data
that both shows a match between the evolutionary ordering
of color systems and the importance ordering of informative
dimensions of the data, and derives the focal colors from the
extremes of those component dimensions. These results arise
from a simple and straightforward application of PCA, a stan-
dard method from semantic typology for extracting salient di-
mensions from crosslinguistic naming patterns.

First, our approach reveals a quantitative importance or-
dering of latent dimensions of color semantics that strongly
matches qualitative analyses of the evolutionary stages of
color lexicons (e.g., Berlin & Kay, 1969; Kay et al., 2009).
Specifically, we find that the color distinctions captured by
each successive extracted dimension of the data largely cor-
respond to the distinctions made in successive stages of color
term evolution. Moreover, we show that the importance or-
dering of these dimensions holds even when considering lan-
guages at individual evolutionary stages, thus controlling for
frequency of earlier vs. later distinctions in the data. Our
work thus lends further evidence that speakers are sensitive
to evolutionarily-important color distinctions that are not ex-
pressed directly by basic terms in their own language (cf.
Boster, 1986; Xu et al., 2013; Gibson et al., 2017; Holmes
& Regier, 2017).

Second, we find that the extreme points of the identified
color dimensions correspond to a small set of focal color
regions shown to occur across languages (e.g., MacLaury,
1997). Our work thus reinforces a growing body of research
showing that focal colors are important dimensions of color
space that serve as “anchors” for color categories (e.g., Regier
et al., 2005). It has been proposed that focal colors arise at
points of an irregularly-shaped perceptual space that maxi-
mize the distance between them (e.g., Jameson & D’Andrade,
1997; Regier et al., 2007). Although our method is agnostic
as to the source of the latent dimensions (whether percep-
tual, and/or salience, as in Gibson et al., 2017, and/or com-
municative pressures, as in Zaslavsky et al., 2018), our re-
sults, like those of Abbott et al. (2012), show that the nam-
ing patterns of languages reflect the universal foci. Our ap-
proach further sheds light on the focal colors as extremes in
the evolutionarily-important dimensions of color semantics.

3076



Acknowledgments
JW and SS are supported by an NSERC Discovery Grant
RGPIN-2017-06506 to SS. We thank the anonymous review-
ers for their constructive comments.

References
Abbott, J. T., Regier, T., & Griffiths, T. L. (2012). Predicting

focal colors with a rational model of representativeness. In
Proceedings of the 34th Annual Meeting of the Cognitive
Science Society.

Beekhuizen, B., Fazly, A., & Stevenson, S. (2014). Learning
Meaning without Primitives: Typology Predicts Develop-
mental Patterns. In Proceedings of the 36th Annual Meet-
ing of the Cognitive Science Society.

Beekhuizen, B., & Stevenson, S. (2018). More than the eye
can see: A computational model of color term acquisition
and color discrimination. Cognitive Science, 42(8), 2699–
2734.

Berlin, B., & Kay, P. (1969). Basic color terms: Their uni-
versality and evolution. Berkeley, CA: UC Press.

Boster, J. (1986). Can individuals recapitulate the evolu-
tionary development of color lexicons? Ethnology, 25(1),
61–74.

Gibson, E., Futrell, R., Jara-Ettinger, J., Mahowald, K.,
Bergen, L., Ratnasingam, S., . . . Conway, B. R. (2017).
Color naming across languages reflects color use. PNAS,
114(40), 10785–10790.

Heider, E. R. (1972). Universals in color naming and mem-
ory. Journal of Experimental Psychology, 93(1), 10–20.

Holmes, K., & Regier, T. (2017). Categorical perception
beyond the basic level: The case of warm and cool colors.
Cognitive Science, 41, 1135–1147.
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