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Introduction

How are the meanings of these words acquired?

I Gentner & Bowerman (2009):
I Some meanings are acquired earlier than others
I For some meanings, acquisition shows more errors

I Typological Prevalence Hypothesis:
I The more languages co-categorize two situations, the more

cognitively natural that meaning category is
I Consequence: the earlier/easier it is acquired
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Introduction

Case study: Dutch prepositions

I Gentner & Bowerman (2009):
I Op and in acquired before aan and om
I Op overgeneralized to aan and om
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Introduction

Approximating semantic space

I Languages carve up the semantic space in different ways
I Use cross-linguistic data to approximate the lay-out of

semantic space

I Lay-out of space reflects patterns of co-categorization
I No hand-selected semantic features

I Conceptual space is universal conceptual starting point
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Introduction

Our approach: computational modeling

I Extracts semantic space from cross-linguistic data
I Train classifier on this space:

I Can the model acquire the extension of prepositions?
I Can the model simulate the developmental error pattern?
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Method

Data

Data: Cross-linguistic elicitation

I Levinson et al. (2003):
I Set of pictures of spatial relations
I Elicited markers for 9 unrelated languages

language markers language markers
Basque barruan (21) Tiriyó tao (9); awë (1)
Dutch in (10) Trumai fax-on (2)
Ewe me (1) Yeli Dnye k:oo (4)
Lao naj2 (3) Yukatek ich (1)

Lavukaleve o-koli-n (1)
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Method

Data

Data: Counts of elicitations

language-word pairs

Basque Basque Basque . . . Yukatek Yukatek
situation barruan barnean gainean . . . ich y=aanal)

cup on table 0 0 26 . . . 0 0
apple in bowl 21 0 0 1 0

...
...

house in fence 16 4 0 . . . 0 0

I This matrix is primary source of semantic space
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Method

Principal Component Analysis

Extracting underlying space

I Dimension reduction: Principal Component Analysis

I Situations represented as values on the latent dimensions

components

situation comp. 1 comp. 2 comp. 3 . . . comp. 71

cup on table 22.9 -13.5 0.9 . . . 0.0
apple in bowl -18.2 -16.8 0.5 0.0

...
...

house in fence -14.6 -13.8 0.1 . . . 0.0

11 / 23



Learning Meaning without Primitives

Method

Principal Component Analysis

Semantic space

I Positioning of situations reflects cross-linguistic grouping
I For Dutch categorization (in, aan, op and om situations)
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Method

Classification: Gaussian Näıve Bayes

Classification: Gaussian Näıve Bayes

I Next step: using this space to train a classifier
I Simple model: Gaussian Näıve Bayes
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Experiment

Experimental set-up

Experimental set-up: data generation

I Only 71 unique situations
I So we generate situation-preposition pairs as input items:

I corpus frequency (CDS) of prepositions as prior
I probability of situation given preposition as likelihood term

I Run 30 simulations
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Experiment

Experimental set-up

Experimental set-up: evaluation

I Only using first 7 components of PCA
I After 50 generated input items:

I take situation to be classified sc out of input items,
I train on all remaining situation-preposition pairs,
I predict most likely preposition for sc ,
I repeat for each situation

I Do so after every 50 input items (development)
I Measure:

I overall: how many of the prepositions are predicted correctly?
I developmental: which categories are overgeneralized to which

others?
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Experiment

Results

Overall results

I For what proportion of the situations is most frequent label
correctly predicted?

I After 1000 training items: 0.74 (σ = 0.03)
I ceiling = 0.94
I baseline = 0.37 (corpus frequencies)

I Significantly better than baseline (t-test, p < .001)
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Experiment

Results

Developmental results

I Recall: Gentner and Bowerman (2009)
I In and op are acquired before aan and om
I Op is overgeneralized to aan and om early in development.
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Experiment

Results

Developmental results

Predicted prepositions for in
situations
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I In and op are acquired very early in development
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Experiment

Results

Developmental results

Predicted prepositions for aan
situations
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I Aan and om are acquired later

I Overgeneralization from op to aan and om
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Experiment

Results

Interpretation
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Experiment

Frequency effects?

Frequency effects?
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I Take frequency out as a factor (uniform generation)
I No more overgeneralization
I Significant decrease in accuracy

(µ = 0.58, σ = 0.05; t-test, p < .001)

I In is most frequent preposition but not overgeneralized as
much as op

I So likely frequency and lay-out of space
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Conclusions and future work

Conclusions and future work

I Replicate experimental findings on children
I order of acquisition
I overgeneralization

I Semantic acquisition without hand-selected features
I Supports Typological Prevalence Hypothesis

I The more languages co-categorize two situations,
I the more natural that group is,
I the easier/earlier it is acquired.

I Future work:
I Data gathering (Crowdsourcing, more domains and languages)
I Application to other linguistic domains (count/mass,

dimensional adjectives)
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Conclusions and future work
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