Learning Meaning without Primitives Typology Predicts Developmental Patterns

Barend Beekhuizen^{1,2} Afsaneh Fazly³ Suzanne Stevenson³

¹Leiden University Centre for Linguistics, Leiden University ²Institute for Logic, Language, and Computation, University of Amsterdam

³Department of Computer Science, University of Toronto

25 July 2014 CogSci 2014

Spatial relations across languages

English

≣ •∕ ९ ୯ 2 / 23

Spatial relations across languages

Dutch

≣ •∕२० 3/23

Spatial relations across languages

Tiriyó

≣ •∕ ९ २ २ 4 / 23

- Introduction

How are the meanings of these words acquired?

- Gentner & Bowerman (2009):
 - Some meanings are acquired earlier than others
 - For some meanings, acquisition shows more errors

-Introduction

How are the meanings of these words acquired?

- Gentner & Bowerman (2009):
 - Some meanings are acquired earlier than others
 - For some meanings, acquisition shows more errors
- Typological Prevalence Hypothesis:
 - The more languages co-categorize two situations, the more cognitively natural that meaning category is
 - Consequence: the earlier/easier it is acquired

- Introduction

Case study: Dutch prepositions

▶ Gentner & Bowerman (2009):

- Op and in acquired before aan and om
- Op overgeneralized to aan and om

- Introduction

Approximating semantic space

- Languages carve up the semantic space in different ways
- Use cross-linguistic data to approximate the lay-out of semantic space

Approximating semantic space

- Languages carve up the semantic space in different ways
- Use cross-linguistic data to approximate the lay-out of semantic space
 - Lay-out of space reflects patterns of co-categorization
 - No hand-selected semantic features

Approximating semantic space

- Languages carve up the semantic space in different ways
- Use cross-linguistic data to approximate the lay-out of semantic space
 - Lay-out of space reflects patterns of co-categorization
 - No hand-selected semantic features
- Conceptual space is universal conceptual starting point

- Introduction

Our approach: computational modeling

- Extracts semantic space from cross-linguistic data
- Train classifier on this space:
 - Can the model acquire the extension of prepositions?
 - Can the model simulate the developmental error pattern?

— Method

Data

Data: Cross-linguistic elicitation

- Levinson et al. (2003):
 - Set of pictures of spatial relations
 - Elicited markers for 9 unrelated languages

language	markers	language	markers	
Basque	barruan (21)	Tiriyó	tao (9); awë (1)	
Dutch	in (10)	Trumai	fax-on (2)	
Ewe	<i>me</i> (1)	Yeli Dnye	k:oo (4)	
Lao	naj2 (3)	Yukatek	ich (1)	
Lavukaleve	o-koli-n (1)			3

9/23

- Method

Data

Data: Counts of elicitations

	language-word pairs						
situation	Basque <i>barruan</i>	Basque <i>barnean</i>	Basque <i>gainean</i>	· · · · · · ·	Yukatek <i>ich</i>	Yukatek <i>y=aanal</i>)	
cup on table	0	0	26		0	0	
apple in bowl	21	0	0		1	0	
÷							
house in fence	16	4	0		0	0	

This matrix is primary source of semantic space

- Method

Principal Component Analysis

Extracting underlying space

- Dimension reduction: Principal Component Analysis
- Situations represented as values on the latent dimensions

	components						
situation	comp. 1	comp. 2	comp. 3		comp. 71		
cup on table apple in bowl	22.9 -18.2	-13.5 -16.8	0.9 0.5		0.0 0.0		
: house in fence	-14.6	-13.8	0.1		: 0.0		

- Method

Principal Component Analysis

Semantic space

- Positioning of situations reflects cross-linguistic grouping
- ▶ For Dutch categorization (*in*, *aan*, *op* and *om* situations)

- Method

Classification: Gaussian Naïve Bayes

Classification: Gaussian Naïve Bayes

- Next step: using this space to train a classifier
- Simple model: Gaussian Naïve Bayes

– Experiment

Experimental set-up

Experimental set-up: data generation

- Only 71 unique situations
- ► So we generate situation-preposition pairs as input items:
 - corpus frequency (CDS) of prepositions as prior
 - probability of situation given preposition as likelihood term
- Run 30 simulations

- Experiment

Experimental set-up

Experimental set-up: evaluation

- Only using first 7 components of PCA
- After 50 generated input items:
 - ▶ take situation to be classified *s_c* out of input items,
 - train on all remaining situation-preposition pairs,
 - predict most likely preposition for s_c,
 - repeat for each situation
- Do so after every 50 input items (development)
- Measure:
 - overall: how many of the prepositions are predicted correctly?
 - developmental: which categories are overgeneralized to which others?

└─ Experiment

Results

Overall results

For what proportion of the situations is most frequent label correctly predicted?

16/23

- After 1000 training items: 0.74 ($\sigma = 0.03$)
 - ceiling = 0.94
 - baseline = 0.37 (corpus frequencies)
- ▶ Significantly better than baseline (*t*-test, *p* < .001)

– Experiment

Results

Developmental results

▶ Recall: Gentner and Bowerman (2009)

- In and op are acquired before aan and om
- Op is overgeneralized to aan and om early in development.

– Experiment

Results

Developmental results

Predicted prepositions for *in* situations

Predicted prepositions for *op* situations

In and op are acquired very early in development

— Experiment

- Results

Developmental results

Predicted prepositions for *aan* situations

Predicted prepositions for *om* situations

・ 同 ト ・ ヨ ト ・ ヨ ト

- Aan and om are acquired later
- Overgeneralization from op to aan and om

э

– Experiment

Results

Interpretation

in

300 500 iterations 900 700

aan

– Experiment

Frequency effects?

Frequency effects?

- Take frequency out as a factor (uniform generation)
 - No more overgeneralization
 - Significant decrease in accuracy (μ = 0.58, σ = 0.05; t-test, p < .001)

- Experiment

Frequency effects?

Frequency effects?

- Take frequency out as a factor (uniform generation)
 - No more overgeneralization
 - Significant decrease in accuracy

 $(\mu = 0.58, \sigma = 0.05; t$ -test, p < .001)

- In is most frequent preposition but not overgeneralized as much as op
- So likely frequency and lay-out of space

Conclusions and future work

Conclusions and future work

- Replicate experimental findings on children
 - order of acquisition
 - overgeneralization
- Semantic acquisition without hand-selected features
- Supports Typological Prevalence Hypothesis
 - The more languages co-categorize two situations,
 - the more natural that group is,
 - the easier/earlier it is acquired.
- Future work:
 - Data gathering (Crowdsourcing, more domains and languages)
 - Application to other linguistic domains (count/mass, dimensional adjectives)

Conclusions and future work

Thanks to:

- Folgert Karsdorp for important suggestions
- Asifa Majid and Stephen Levinson for courteously allowing us to use their data
- NWO (Netherlands) for funding of Barend Beekhuizen,
- NSERC (Canada) for funding of Afsaneh Fazly and Suzanne Stevenson.