Perceptual, Conceptual, and Frequency Effects on Error Patterns in English Color Term Acquisition

Barend Beekhuizen & Suzanne Stevenson

Department of Computer Science University of Toronto

CogACLL, 18 September 2015

Beekhuizen & Stevenson

uter Science University of Toronto

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

Overview

- What causes children to make errors in word-meaning acquisition?
- Typological Prevalence Hypothesis
- Earlier work for space
- Extension to color

Beekhuizen & Stevenson

outer Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Typological Prevalence Hypothesis

[?]:The more languages group two situations under the same linguistic label, the more cognitively natural that grouping is and hence, the easier to acquire for children

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Beekhuizen & Stevenson

uter Science University of Toronto

Typological Prevalence Hypothesis

[?]:The more languages group two situations under the same linguistic label, the more cognitively natural that grouping is and hence, the easier to acquire for children

Beekhuizen & Stevenson

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

Typological Prevalence Hypothesis

[?]:The more languages group two situations under the same linguistic label, the more cognitively natural that grouping is and hence, the easier to acquire for children

Beekhuizen & Stevenson

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

- This hypothesis in a computational model
- Extract semantic space from linguistic elicitations
- Dutch children: use *op* for *aan*-situations (overextension).
- Follows from semantic space

Beekhuizen & Stevenson

uter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- This hypothesis in a computational model
- Extract semantic space from linguistic elicitations
- Dutch children: use *op* for *aan*-situations (overextension).
- Follows from semantic space

	English			Dutch			Tiriyo		
	on	in	ор	aan	om	in	tao	tae	pëkë
apple in bowl	0	1	0	0	0	1	1	0	0
ring on finger	1	0	0	0	1	0	0	1	0
pen on table	1	0	1	0	0	0	0	1	0
painting on wall	1	0	0	1	0	0	0	0	1

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Beekhuizen & Stevenson

iter Science University of Toronto

- This hypothesis in a computational model
- Extract semantic space from linguistic elicitations
- Dutch children: use op for aan-situations (overextension).
- Follows from semantic space

	ring on finger	pen on table	painting on wall
apple in bowl ring on finger pen on table	1	1 0.5	1 0.25 0.4

Beekhuizen & Stevenson

uter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- This hypothesis in a computational model
- Extract semantic space from linguistic elicitations
- Dutch children: use op for aan-situations (overextension).
- Follows from semantic space

Beekhuizen & Stevenson

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

- This hypothesis in a computational model
- Extract semantic space from linguistic elicitations
- Dutch children: use op for aan-situations (overextension).
- Follows from semantic space

Beekhuizen & Stevenson

ater Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

- Study effect of typological prevalence in other domains
- Here : Color
- Our focus: many overextensions: why?
 - Overextension = use of word to express a meaning for which adult speakers have another word (e.g., op for aan).
- Explanation in terms of typological prevalence?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

[**?**]

- 591 English-speaking children, age 6-12.
- Shown 8 color chips each, for colors BLACK, WHITE, RED, YELLOW, GREEN, BLUE, ORANGE, and PURPLE
- Results:
 - BLACK, WHITE, RED, and BLUE: hardly any errors;
 - GREEN and YELLOW: a few early errors;
 - ORANGE: somewhat haphazard, persistent errors;
 - PURPLE: persistent errors, mostly blue (but not purple for BLUE!)

Beekhuizen & Stevenson

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

- What causes this error pattern?
 - Usual suspect #1: color term frequency
 - Usual suspect #2: perceptual features of colors [?]
 - New: Typological prevalence of color groupings?
- Approach:
 - Cognitive model parametrizing these possible factors
 - **e** perceptual features \rightarrow part of meaning space,
 - typological prevalence → part of meaning space,
 - frequency \rightarrow part of input-item sampling procedure.
 - Give model Bateman's color chips and ask for most likely color term.
 - Evaluate fit with Bateman's observed error pattern given various parameter settings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

Do the perceptual features of the colors play a role? CIELab space

■ If +perc, every exemplar has as a coordinate in this space

- Does typological prevalence play a role?
- Same approach as outlined earlier:

uter Science University of Toronto

Same approach as outlined earlier:

 get count matrix per language from linguistic elicitations (World Color Survey [?])

Beekhuizen & Stevenson

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

Same approach as outlined earlier:

 get count matrix per language from linguistic elicitations (World Color Survey [?])

Count matrix for English						
white pink orange purple						
chip A1 chip A2	15 2	0 13	0 0		0 0	
: chip I40	0	0	0		15	

Beekhuizen & Stevenson

puter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Same approach as outlined earlier:

- get count matrix per language from linguistic elicitations (World Color Survey [?])
- per language: distance matrix between all color chips,

Distance matrix for English						
	chip B1	chip C1	chip D1		chip I40	
chip A1 chip B1 :	0.81	0.87 0.26	0.98 0.42	· · · · · · ·	1 0.96	
chip H40					0.81	

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ つへぐ

Beekhuizen & Stevenson

uter Science University of Toronto

Same approach as outlined earlier:

- get count matrix per language from linguistic elicitations (World Color Survey [?])
- per language: distance matrix between all color chips,
- sum distance matrices for all languages,

Distance matrix for all languages						
	chip B1	chip C1	chip D1		chip I40	
chip A1 chip B1 :	120.4	122.1 73.6	136.8 82.1		142.0 128.1	
chip H40)				112.6	

Beekhuizen & Stevenson

puter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- Does typological prevalence play a role?
- Same approach as outlined earlier:
 - get count matrix per language from linguistic elicitations (World Color Survey [?])
 - per language: distance matrix between all color chips,
 - sum distance matrices for all languages,
 - apply PCA, use components with Eigenvalue > 1,

FCA coordinates for all color chips						
	PCA1	PCA2	PCA3		PCA330	
chip A1 chip B1	2.4 2.7	-4.2 -1.9	3.8 1.0	 	0.0 0.0	
: chip H40	-4.2	2.2	3.2		0.0	

PCA coordinates for all color chips

・ロ・・ 日・・ 山・・ 日・ うらつ

Beekhuizen & Stevenson

uter Science University of Toronto

- Does typological prevalence play a role?
- Same approach as outlined earlier:
 - get count matrix per language from linguistic elicitations (World Color Survey [?])
 - per language: distance matrix between all color chips,
 - sum distance matrices for all languages,
 - apply PCA, use components with Eigenvalue > 1,

■ If +conc, all exemplars have a coordinate in this space.

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Does frequency in CDS play a role?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Beekhuizen & Stevenson

uter Science University of Toronto

- Does frequency in CDS play a role?
- Sampling procedure: we sample iteratively pairs of a color term t and a situation s,
 - where s is the vector of the perceptual and/or conceptual coordinates.

$$P(s,t) = P(s|t)P(t)$$

$$P(s|t) = \frac{P(s|t)}{\sum_{s' \in S} n(t,s')}$$

puter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- Does frequency in CDS play a role?
- Sampling procedure: we sample iteratively pairs of a color term t and a situation s,
 - where s is the vector of the perceptual and/or conceptual coordinates.

$$\blacksquare P(s,t) = P(s|t)P(t)$$

•
$$P(s|t) = \frac{n(t,s)}{\sum_{s' \in S} n(t,s')}$$

- Two conditions:
 - relative: P(t) is relative frequency of color terms in CDS, [?],
 - uniform: P(t) is uniform.

ater Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Overview

Train learning model on iteratively sampled *t*, *s* pairs

t		S
red	52.4, 0.8, 0.2	, 0.83, 0.23, 0.41, 0.03
	perc	conc

- Every 10 input items (test moment)
 - give model the 8 colors of [?] (using focal colors [?] represented as an s)
 - ask model for most likely color term t

Evaluate fit between predicted responses and observed responses

Beekhuizen & Stevenson

er Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Gaussian Naive Bayes (GNB)

Centroid learner

- Learns Gaussians over the dimensions of the situations (perceptual and conceptual) from available data
- Categorizes test item on the basis of Maximum A Posteriori probability

Generalized Context Model (GCM)

Exemplar learner [?]

 Categorizes test item on the basis of similarity to all stored exemplars

Beekhuizen & Stevenson

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Simulation runs for 1000 input items

I.e. 100 test moments for the 8 color chips

Beekhuizen & Stevenson

outer Science University of Torontc

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Simulation runs for 1000 input items

- I.e. 100 test moments for the 8 color chips
- 30 simulations per combination of parameter settings:

$$\blacksquare$$
 model = {GNB, GCM}

Beekhuizen & Stevenson

outer Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Comparing test moment with observed moment:

- 30 simulations: distribution over color terms
- n children: distribution over color terms
- take Euclidean distance between them (error).

Beekhuizen & Stevenson

uter Science University of Torontc

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Comparing test moment with observed moment:

- 30 simulations: distribution over color terms
- n children: distribution over color terms
- take Euclidean distance between them (error).
- However, 100 test moments and only 5 age bins.
- So, align predicted with observed data

Beekhuizen & Stevenson

puter Science University of Toronto

- Comparing test moment with observed moment:
 - 30 simulations: distribution over color terms
 - n children: distribution over color terms
 - take Euclidean distance between them (error).
- However, 100 test moments and only 5 age bins.
- So, align predicted with observed data
- Solution: 5 test moments that have lowest distance to 5 age bins (over all 8 colors)
- Constraint: linearly ordered

puter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

parameter	setting	mean error
	perc&conc	$\mu = 0.015$
features ***	perc	$\mu=$ 0.020
	conc	$\mu=$ 0.354
fromonau	relative	$\mu = 0.130$
Trequency	uniform	$\mu=$ 0.130
modol *	GCM	$\mu = 0.120$
moder	GNB	$\mu=$ 0.139

Interpretation

- No effect of frequency: cf. [?]?
- Small effect of model
- Effect of features: perc, perc&conc > conc:
 - English is natural
 - Children too old
 - Color is easier domain then space

Beekhuizen & Stevenson

BLACK, WHITE, RED, and BLUE: hardly any errors;

■ GREEN and YELLOW: a few early errors;

ORANGE: somewhat haphazard, persistent errors;

PURPLE: persistent errors, mostly blue (but not purple for BLUE!)

Beekhuizen & Stevenson

outer Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- BLACK, WHITE, RED, and BLUE: hardly any errors;
 - → Predicted correctly by model
- GREEN and YELLOW: a few early errors;
 - \rightarrow Underestimation of the few errors
- ORANGE: somewhat haphazard, persistent errors;

PURPLE: persistent errors, mostly blue (but not purple for BLUE!)

Beekhuizen & Stevenson

uter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- BLACK, WHITE, RED, and BLUE: hardly any errors;
 - → Predicted correctly by model
- GREEN and YELLOW: a few early errors;
 - \rightarrow Underestimation of the few errors
- ORANGE: somewhat haphazard, persistent errors;
 - → Underestimation of the errors
- PURPLE: persistent errors, mostly blue (but not purple for BLUE!)

uter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- BLACK, WHITE, RED, and BLUE: hardly any errors;
 - → Predicted correctly by model
- GREEN and YELLOW: a few early errors;
 - → Underestimation of the few errors
- ORANGE: somewhat haphazard, persistent errors;
 - \rightarrow Underestimation of the errors
- PURPLE: persistent errors, mostly blue (but not purple for BLUE!)
 - $\rightarrow\,$ see following slides \ldots

uter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Best fit for **PURPLE**!

Beekhuizen & Stevenson

uter Science University of Torontc

uter Science University of Toronto

· _ · · · 글 · · · 글 ▶ 《 클 ▶ · 클 · · ⑦ Q (↔ ni ol: Computer Science, University of Toronto

Conceptual dimensions don't increase fit over perceptual

Beekhuizen & Stevenson

uter Science University of Toronto

Conceptual dimensions don't increase fit over perceptual

Reason: correlation with perceptual dimensions

	L*	a*	b*
PCA1	-0.01	0.80*	-0.01
PCA2	-0.97***	0.40	-0.08
PCA3	0.16	-0.03	-0.88^{**}
PCA4	0.60	-0.86^{*}	0.70

Beekhuizen & Stevenson

uter Science University of Toronto

◆□ → ◆□ → ◆目 → ▲目 → ● ● ● ● ●

- Conceptual dimensions don't increase fit over perceptual
- Reason: correlation with perceptual dimensions

	L*	a*	b*
PCA1	-0.01	0.80*	-0.01
PCA2	-0.97***	0.40	-0.08
PCA3	0.16	-0.03	-0.88^{**}
PCA4	0.60	-0.86^{*}	0.70

However: why do they correlate strongly but perform much worse independently?

Beekhuizen & Stevenson

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Role of typological prevalence (vs. perceptual effects and word frequency) in color term acquisition.

Beekhuizen & Stevenson

outer Science University of Toronto

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

- Role of typological prevalence (vs. perceptual effects and word frequency) in color term acquisition.
- Main results:
 - Perceptual features predicted error pattern best.

uter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

- Role of typological prevalence (vs. perceptual effects and word frequency) in color term acquisition.
- Main results:
 - Perceptual features predicted error pattern best.

outer Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

- Role of typological prevalence (vs. perceptual effects and word frequency) in color term acquisition.
- Main results:
 - Perceptual features predicted error pattern best.
 - Typological prevalence ('conceptual features') added no error-reduction and performed much worse without perceptual features.

outer Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- Role of typological prevalence (vs. perceptual effects and word frequency) in color term acquisition.
- Main results:
 - Perceptual features predicted error pattern best.
 - Typological prevalence ('conceptual features') added no error-reduction and performed much worse without perceptual features.
 - Frequency matters for some colors (see PURPLE)

uter Science University of Toronto

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- Extend this approach to developmental data on more languages and younger children.
- Issue of model behaving too well (underestimating errors).

puter Science University of Toronto

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Thank you!

◆□ > ◆□ > ◆ ≧ > ◆ ≧ > ○ ≧ ○ の < ♡

Beekhuizen & Stevenson

uter Science University of Toronto

What's there to do

Beekhuizen & Stevenson

uter Science University of Toronto