A Usage-Based Model of Early Grammatical Development

Barend Beekhuizen1,2 Rens Bod2 Afsaneh Fazly3 Suzanne Stevenson3 Arie Verhagen1

1Leiden University Centre for Linguistics, Leiden University

2Institute for Logic, Language, and Computation, University of Amsterdam

3Department of Computer Science, University of Toronto

26 June 2014
Workshop on Cognitive Modeling and Computational Linguistics
Motivation

- Explaining early production in first language acquisition
- Interaction of learning mechanisms

Model

- Semantic parser and generator
- Incrementally acquiring constructions from parses

Experiments

- Parsing experiment
- Generation experiment
Motivation

- Explaining early production in first language acquisition
- Interaction of learning mechanisms

Model

- Semantic parser and generator
- Incrementally acquiring constructions from parses

Experiments

- Parsing experiment
- Generation experiment
Motivation

- Explaining early production in first language acquisition
- Interaction of learning mechanisms

Model

- Semantic parser and generator
- Incrementally acquiring constructions from parses

Experiments

- Parsing experiment
- Generation experiment
The two-word phase

Daddy get!

Questions

- What are the representations behind these truncated utterances?
- How do these representations develop?

Earlier proposals

- Braine (1976), Schlesinger (1971)
- Usage-based proposals: Theakston et al. (2012)
 - Main focus is on abstraction (paradigmatic) rather than increasing syntagmatic knowledge
Introduction

Early production

The two-word phase

Daddy get!

Questions

- What are the representations behind these truncated utterances?
- How do these representations develop?

Earlier proposals

- Braine (1976), Schlesinger (1971)
- Usage-based proposals: Theakston et al. (2012)
 - Main focus is on abstraction (paradigmatic) rather than increasing syntagmatic knowledge
The two-word phase

Daddy get!

Questions

▶ What are the representations behind these truncated utterances?
▶ How do these representations develop?

Earlier proposals

▶ Braine (1976), Schlesinger (1971)
▶ Usage-based proposals: Theakston et al. (2012)
 ▶ Main focus is on abstraction (paradigmatic) rather than increasing syntagmatic knowledge
Goal 1

- Work out a model that explains syntagmatic development in early production from a usage-based vantage point
- Assuming that the length or arity of representations increases

Current models

<table>
<thead>
<tr>
<th>model</th>
<th>syntagms</th>
<th>grammatical</th>
<th>lexical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang (2008)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freudenthal et al. (2009)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alishahi & Stevenson (2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwiatkowski et al. (2012)</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Goal 1

- Work out a model that explains syntagmatic development in early production from a usage-based vantage point
- Assuming that the length or arity of representations increases

Current models

<table>
<thead>
<tr>
<th>model</th>
<th>acquires:</th>
<th>syntagms</th>
<th>grammatical</th>
<th>lexical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang (2008)</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freudenthal et al. (2009)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alishahi & Stevenson (2010)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwiatkowski et al. (2012)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
A Usage-Based Model of Early Grammatical Development

Introduction

Interacting learning mechanisms

▶ All constructions acquired with **same mechanisms**
 (construction grammar: Tomasello 2003, Goldberg 2006)
▶ ‘Linking’ lexical acquisition, schematization, growth of rules
 (Beekhuizen, Bod & Verhagen 2014)

Interacting learning mechanisms

▶ So: responsible mechanisms interact

Current models

<table>
<thead>
<tr>
<th>model</th>
<th>acquires:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>syntagms</td>
</tr>
<tr>
<td>Chang (2008)</td>
<td>✓</td>
</tr>
<tr>
<td>Freudenthal et al. (2009)</td>
<td></td>
</tr>
<tr>
<td>Alishahi & Stevenson (2010)</td>
<td></td>
</tr>
<tr>
<td>Kwiatkowski et al. (2012)</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

- All constructions acquired with same mechanisms (construction grammar: Tomasello 2003, Goldberg 2006)
- ‘Linking’ lexical acquisition, schematization, growth of rules (Beekhuizen, Bod & Verhagen 2014)

Interacting learning mechanisms

- So: responsible mechanisms **interact**

Current models

<table>
<thead>
<tr>
<th>model</th>
<th>syntagms</th>
<th>grammatical</th>
<th>lexical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang (2008)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freudenthal et al. (2009)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alishahi & Stevenson (2010)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwiatkowski et al. (2012)</td>
<td>✓ ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Usage-Based Model of Early Grammatical Development

Introduction

Interacting learning mechanisms

- All constructions acquired with same mechanisms (construction grammar: Tomasello 2003, Goldberg 2006)
- ‘Linking’ lexical acquisition, schematization, growth of rules (Beekhuizen, Bod & Verhagen 2014)

Interacting learning mechanisms

- So: responsible mechanisms interact

Current models

<table>
<thead>
<tr>
<th>model</th>
<th>acquires:</th>
<th>syntagms</th>
<th>grammatical</th>
<th>lexical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang (2008)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freudenthal et al. (2009)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alishahi & Stevenson (2010)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwiatkowski et al. (2012)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Goal 2

Account of language acquisition in which

- both lexical and grammatical constructions are acquired with the same set of mechanisms

Current models

<table>
<thead>
<tr>
<th>model</th>
<th>syntagms</th>
<th>grammatical</th>
<th>lexical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang (2008)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Freudenthal et al. (2009)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alishahi & Stevenson (2010)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwiatkowski et al. (2012)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>this model</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Goal 2
Account of language acquisition in which
- both lexical and grammatical constructions are acquired with the same set of mechanisms

Current models

<table>
<thead>
<tr>
<th>model</th>
<th>acquires:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>syntagms</td>
</tr>
<tr>
<td>Chang (2008)</td>
<td>✓</td>
</tr>
<tr>
<td>Freudenthal et al. (2009)</td>
<td>✓</td>
</tr>
<tr>
<td>Alishahi & Stevenson (2010)</td>
<td>✓</td>
</tr>
<tr>
<td>Kwiatkowski et al. (2012)</td>
<td>✓</td>
</tr>
<tr>
<td>this model</td>
<td>✓</td>
</tr>
</tbody>
</table>
Input data

- Learner receives utterances paired with sets of situations
- Interpretability requirement (O'Grady 1997)

Definitions

- Utterance U is a string of words w_1, w_2, \ldots, w_n
- S is a set of situations s
- Propositional uncertainty: $|S| > 1$ (Siskind 1996)
- Propositional noise: $s_{correct} \not\in S$ (Siskind 1996)
Input data

- Learner receives utterances paired with sets of situations
- Interpretability requirement (O'Grady 1997)

Definitions

- Utterance U is a string of words w_1, w_2, \ldots, w_n
- S is a set of situations s
 - Propositional uncertainty: $|S| > 1$ (Siskind 1996)
 - Propositional noise: $s_{correct} \notin S$ (Siskind 1996)
A Usage-Based Model of Early Grammatical Development

Model
Input data

- Input data
 - Learner receives utterances paired with sets of situations
 - Interpretability requirement (O'Grady 1997)

Definitions

- Utterance U is a string of words w_1, w_2, \ldots, w_n
- S is a set of situations s
- Propositional uncertainty: $|S| > 1$ (Siskind 1996)
- Propositional noise: $s_{correct} \notin S$ (Siskind 1996)
Representations learned from input:

- Constructions, cf. construction grammar (Goldberg 1995)

Definition

- Pairings of
 - a meaning (tree)
 - a string of constituents, each containing
 - a phonological form
 - a semantic pointer
Parsing

- Model tries to find which parts of U map to which parts of an $s \in S$.
- By creating derivations of constructions given U, S, using four interpretation mechanisms:
 - **Combine**: fill a phonologically open constituent of one construction with another construction
 - **Concatenate**: create a list of derivations
 - **Bootstrap**: fill a phonologically open constituent with an unknown word
 - **Ignore**: don’t integrate the word in the derivation
- Constraints on derivations:
 - All constructions in a derivation should map to the same $s \in S$.
 - Each construction in a derivation maps to a different node of the meaning (isomorphy)
Model

Parsing/Generating

Parsing

- Model tries to find which parts of U map to which parts of an $s \in S$.
- By creating derivations of constructions given U, S, using four interpretation mechanisms:
 - **Combine**: fill a phonologically open constituent of one construction with another construction
 - **Concatenate**: create a list of derivations
 - **Bootstrap**: fill a phonologically open constituent with an unknown word
 - **Ignore**: don’t integrate the word in the derivation

- Constraints on derivations:
 - All constructions in a derivation should map to the same $s \in S$.
 - Each construction in a derivation maps to a different node of the meaning (isomorphy)
Parsing

- Model tries to find which parts of U map to which parts of an $s \in S$.
- By creating derivations of constructions given U, S, using four interpretation mechanisms:
 - **Combine**: fill a phonologically open constituent of one construction with another construction
 - **Concatenate**: create a list of derivations
 - **Bootstrap**: fill a phonologically open constituent with an unknown word
 - **Ignore**: don’t integrate the word in the derivation
- Constraints on derivations:
 - All constructions in a derivation should map to the same $s \in S$.
 - Each construction in a derivation maps to a different node of the meaning (isomorphy)
A Usage-Based Model of Early Grammatical Development

Figure: The COMBINATION mechanisms
Figure: The IGNORE, BOOTSTRAP, and CONCATENATE mechanisms
Best analysis of U

- Multiple derivations may map to the same parts of a situation
- Then: take them together as a parse t
- Best analysis of U is the most probable parse:

\[P(t) = \sum_{d \in P} P(d) \] \hspace{1cm} (1)

- Let a derivation $d = \langle c_1, c_2, \ldots, c_n \rangle$

\[P(d) = \prod_{i=1}^{n} P(c_i) \] \hspace{1cm} (2)

\[P(c) = \frac{c.\text{count} + 1}{\sum_{c' \in C} c'.\text{count} + |C| + 1} \] \hspace{1cm} (3)

- Where \texttt{BOOTSTRAP} and \texttt{CONCATENATE} count as one unseen c, and \texttt{IGNORE} as two
Best analysis of U

- Multiple derivations may map to the same parts of a situation
- Then: take them together as a parse t
- Best analysis of U is the most probable parse:

$$P(t) = \sum_{d \in p} P(d)$$ \hspace{1cm} (1)

- Let a derivation $d = \langle c_1, c_2, \ldots, c_n \rangle$

$$P(d) = \prod_{i=1}^{n} P(c_i)$$ \hspace{1cm} (2)

$$P(c) = \frac{c.count + 1}{\sum_{c' \in C} c'.count + |C| + 1}$$ \hspace{1cm} (3)

- Where `BOOTSTRAP` and `CONCATENATE` count as one unseen c, and `IGNORE` as two
Best analysis of U

- Multiple derivations may map to the same parts of a situation.
- Then: take them together as a parse t.

Best analysis of U is the most probable parse:

1. \[P(t) = \sum_{d \in p} P(d) \]
2. \[P(d) = \prod_{i=1}^{n} P(c_i) \]
3. \[P(c) = \frac{c\text{.count} + 1}{\sum_{c' \in C} c'\text{.count} + |C| + 1} \]

Where BOOTSTRAP and CONCATENATE count as one unseen c, and IGNORE as two.
Best analysis of U

- Multiple derivations may map to the same parts of a situation
- Then: take them together as a parse t

Best analysis of U is the most probable parse:

\[P(t) = \sum_{d \in p} P(d) \] \hspace{1cm} (1)

- Let a derivation $d = \langle c_1, c_2, \ldots, c_n \rangle$

\[P(d) = \prod_{i=1}^{n} P(c_i) \] \hspace{1cm} (2)

\[P(c) = \frac{c\cdot\text{count} + 1}{\sum_{c' \in C} c'\cdot\text{count} + |C| + 1} \] \hspace{1cm} (3)

- Where BOOTSTRAP and CONCATENATE count as one unseen c, and IGNORE as two
Learning on the basis of best analysis

Idea of learning-as-processing (Langacker 2009)

Four learning mechanisms

- **ASSOCIATE** parts of \(U \) and parts of an \(s \) matching over recent \(U, s \) pairs (cross-situational learning)
- **UPDATE** count of used rules
- **SYNTAGMATIZATION**: store concatenation as a new construction
- **PARADIGMATIZATION**: store (more abstract) overlap between similar constructions as a new construction
Learning on the basis of best analysis

Idea of learning-as-processing (Langacker 2009)

Four learning mechanisms

- **ASSOCIATE** parts of U and parts of an s matching over recent U, s pairs (cross-situational learning)
- **UPDATE** count of used rules
- **SYNTAGMATIZATION**: store concatenation as a new construction
- **PARADIGMATIZATION**: store (more abstract) overlap between similar constructions as a new construction
Learning on the basis of best analysis

Idea of learning-as-processing (Langacker 2009)

Four learning mechanisms

- **ASSOCIATE** parts of U and parts of an s matching over recent U,s pairs (cross-situational learning)
- **UPDATE** count of used rules
- **SYNTAGMATIZATION**: store concatenation as a new construction
- **PARADIGMATIZATION**: store (more abstract) overlap between similar constructions as a new construction
A parse over the utterance you take ball.

A novel, syntagmatized construction

Figure: Syntagmatization
A phonologically empty constituent, generalizing over chair and table.

The set intersection of \{location, entity, chair\} and \{location, entity, table\}.

Figure: Paradigmatization
Training

- Model **incrementally** presented with U, S pairs
- On the basis of Alishahi & Stevenson’s (2010) generation procedure
- $|S| = 2$ (propositional uncertainty is 1)
- Non-correct $s \in S$ randomly generated
- 5 simulations of 2000 input items.
Comprehension experiment

- After every input item measure comprehension.
- Averaging over 50 input items in each of 5 simulations:

<table>
<thead>
<tr>
<th>Identification</th>
<th>What proportion of s_{correct} is identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation coverage</td>
<td>What proportion of the identified s the best parse maps to</td>
</tr>
<tr>
<td>Utterance coverage</td>
<td>What proportion of U is not IGNORED in the best parse</td>
</tr>
</tbody>
</table>
Generation experiment

- After every 50 input items
- Present the model with 50 situations it has never seen
- Generation is parsing but only using COMBINATION
- Best parse is most probable, most expressive one
- The generated U is the yield of best parse given s.
- The actual $U \rightarrow$ the generation model.
- Average over 50 situations in each of 5 simulations:

<table>
<thead>
<tr>
<th>length</th>
<th>Length of U given best parse</th>
</tr>
</thead>
<tbody>
<tr>
<td>situation coverage</td>
<td>What proportion of s is expressed by the best parse</td>
</tr>
<tr>
<td>utterance precision</td>
<td>What proportion of the generated U corresponds to actual U for s</td>
</tr>
<tr>
<td>utterance recall</td>
<td>What proportion of the actual U corresponds to the generated U</td>
</tr>
</tbody>
</table>
A Usage-Based Model of Early Grammatical Development

Experiment

Comprehension experiment

Figure: Comprehension scores over time.
Figure: Mean length of U generated over time.
A Usage-Based Model of Early Grammatical Development

Generation experiment

Figure: Generation scores over time.
Comprehension

- Over time, more of U and s is understood
- Over time, s_{correct} is identified more frequently
- Model can deal with some uncertainty

Generation

- Length increases
- Utterance recall gradually goes up (omission)
- Utterance precision is high from the start (commission)
- Qualitative analysis: in paper
Comprehension

- Over time, more of U and s is understood
- Over time, s_{correct} is identified more frequently
- Model can deal with some uncertainty

Generation

- Length increases
- Utterance recall gradually goes up (omission)
- Utterance precision is high from the start (comission)
- Qualitative analysis: in paper
Concluding:

- **goal 1** Increasing length of utterances in production: ✓
- **goal 2** Interacting mechanisms (lexical & grammatical): ✓

Future work

- **Conceptually:**
 - Model is (admittedly) complex
 - Can we simplify the model?

- **Empirically:**
 - Test battery of studies on early transitive constructions, both comprehension and production
 - Can we simulate diverse experiments and observations?
Concluding:

- **goal 1** Increasing length of utterances in production: ✓
- **goal 2** Interacting mechanisms (lexical & grammatical): ✓

Future work

- **Conceptually:**
 - Model is (admittedly) complex
 - Can we simplify the model?

- **Empirically:**
 - Test battery of studies on early transitive constructions, both comprehension and production
 - Can we simulate diverse experiments and observations?
Concluding:

- **goal 1** Increasing length of utterances in production: ✓
- **goal 2** Interacting mechanisms (lexical & grammatical): ✓

Future work

- **Conceptually:**
 - Model is (admittedly) complex
 - Can we simplify the model?

- **Empirically:**
 - Test battery of studies on early transitive constructions, both comprehension and production
 - Can we simulate diverse experiments and observations?
Thanks to:

- The anonymous reviewers for valuable and thoughtful comments,
- The organization and participants of CMCL,
- Afra Alishahi for providing us with the code of the generation procedure,
- NWO (Netherlands) for funding Barend Beekhuizen,
- NSERC (Canada) for funding Afsaneh Fazly and Suzanne Stevenson.