Barend Beekhuizen^{1,2} Rens Bod² Afsaneh Fazly³ Suzanne Stevenson³ Arie Verhagen¹

¹Leiden University Centre for Linguistics, Leiden University

²Institute for Logic, Language, and Computation, University of Amsterdam

³Department of Computer Science, University of Toronto

26 June 2014

Workshop on Cognitive Modeling and Computational Linguistics

L	Introduction	
	Outline	

Motivation

- Explaining early production in first language acquisition
- Interaction of learning mechanisms

Model

- Semantic parser and generator
- Incrementally acquiring constructions from parses

Experiments

- Parsing experiment
- Generation experiment

Introduction	
Outline	

Motivation

- Explaining early production in first language acquisition
- Interaction of learning mechanisms

Model

- Semantic parser and generator
- Incrementally acquiring constructions from parses

Experiments

- Parsing experiment
- Generation experiment

L	Introduction	
	Outline	

Motivation

- Explaining early production in first language acquisition
- Interaction of learning mechanisms

Model

- Semantic parser and generator
- Incrementally acquiring constructions from parses

Experiments

- Parsing experiment
- Generation experiment

- Introduction

Early production

The two-word phase Daddy get!

Questions

- What are the representations behind these truncated utterances?
- How do these representations develop?

Earlier proposals

- Braine (1976), Schlesinger (1971)
- Generative proposals: Pinker (1984), Boster (1997), Lebeaux (2000), Hyams & Wexler (1993)
- ▶ Usage-based proposals: Theakston et al. (2012)
 - Main focus is on abstraction (paradigmatic) rather than increasing syntagmatic knowledge

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Introduction

Early production

The two-word phase Daddy get!

Questions

- What are the representations behind these truncated utterances?
- How do these representations develop?

Earlier proposals

- Braine (1976), Schlesinger (1971)
- Generative proposals: Pinker (1984), Boster (1997), Lebeaux (2000), Hyams & Wexler (1993)
- ▶ Usage-based proposals: Theakston et al. (2012)
 - Main focus is on abstraction (paradigmatic) rather than increasing syntagmatic knowledge

- Introduction

Early production

The two-word phase Daddy get!

Questions

- What are the representations behind these truncated utterances?
- How do these representations develop?

Earlier proposals

- Braine (1976), Schlesinger (1971)
- Generative proposals: Pinker (1984), Boster (1997), Lebeaux (2000), Hyams & Wexler (1993)
- ▶ Usage-based proposals: Theakston et al. (2012)
 - Main focus is on abstraction (paradigmatic) rather than increasing syntagmatic knowledge

Introduction Early production

Goal 1

- Work out a model that explains syntagmatic development in early production from a usage-based vantage point
- Assuming that the length or arity of representations increases

Current models

modelsyntagmsgrammaticallexicalChang (2008)✓✓Freudenthal et al. (2009)✓✓Alishahi & Stevenson (2010)✓✓Kwiatkowski et al. (2012)✓✓

Learly production

Goal 1

- Work out a model that explains syntagmatic development in early production from a usage-based vantage point
- Assuming that the length or arity of representations increases

Current models

- Introduction

Interacting learning mechanisms

- All constructions acquired with same mechanisms (construction grammar: Tomasello 2003, Goldberg 2006)
- 'Linking' lexical acquisition, schematization, growth of rules (Beekhuizen, Bod & Verhagen 2014)

Interacting learning mechanisms

So: responsible mechanisms interact

Current models

		acquires:	
model	syntagms	grammatical	lexical
Chang (2008)		\checkmark	
Freudenthal et al. (2009)	\checkmark		
Alishahi & Stevenson (2010)		\checkmark	
Kwiatkowski et al. (2012)			\checkmark

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

-Introduction

Interacting learning mechanisms

- All constructions acquired with same mechanisms (construction grammar: Tomasello 2003, Goldberg 2006)
- 'Linking' lexical acquisition, schematization, growth of rules (Beekhuizen, Bod & Verhagen 2014)

Interacting learning mechanisms

► So: responsible mechanisms interact

Current models

model	syntagms	acquires: grammatical	lexical
Chang (2008)		\checkmark	
Freudenthal et al. (2009)	\checkmark		
Alishahi & Stevenson (2010)		\checkmark	
Kwiatkowski et al. (2012)		\checkmark	\checkmark

- Introduction

Interacting learning mechanisms

- All constructions acquired with same mechanisms (construction grammar: Tomasello 2003, Goldberg 2006)
- 'Linking' lexical acquisition, schematization, growth of rules (Beekhuizen, Bod & Verhagen 2014)

Interacting learning mechanisms

► So: responsible mechanisms interact

Current models

		acquires:	
model	syntagms	grammatical	lexical
Chang (2008)		\checkmark	
Freudenthal et al. (2009)	\checkmark		
Alishahi & Stevenson (2010)		\checkmark	
Kwiatkowski et al. (2012)		\checkmark	\checkmark

Interacting learning mechanisms

Goal 2

Account of language acquisition in which

 both lexical and grammatical constructions are acquired with the same set of mechanisms

Current models

		acquires:	
model	syntagms	grammatical	lexical
Chang (2008)		\checkmark	
Freudenthal et al. (2009)	\checkmark		
Alishahi & Stevenson (2010)		\checkmark	
Kwiatkowski et al. (2012)		\checkmark	\checkmark
this model	\checkmark	\checkmark	\checkmark

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Interacting learning mechanisms

Goal 2

Account of language acquisition in which

 both lexical and grammatical constructions are acquired with the same set of mechanisms

Current models

		acquires:	
model	syntagms	grammatical	lexical
Chang (2008)		\checkmark	
Freudenthal et al. (2009)	\checkmark		
Alishahi & Stevenson (2010)		\checkmark	
Kwiatkowski et al. (2012)		\checkmark	\checkmark
this model	\checkmark	\checkmark	\checkmark

L	Model
	L Input data

- Input data
 - Learner receives utterances paired with sets of situations

Interpretability requirement (O'Grady 1997)

Definitions

- Utterance U is a string of words w_1, w_2, \ldots, w_n
- ▶ S is a set of situations s
- ▶ Propositional uncertainty: |S| > 1 (Siskind 1996)
- ▶ Propositional noise: $s_{correct} \notin S$ (Siskind 1996)

L	- Model
	LInput data

- Input data
 - Learner receives utterances paired with sets of situations
 - Interpretability requirement (O'Grady 1997)

Definitions

- Utterance U is a string of words w_1, w_2, \ldots, w_n
- S is a set of situations s
- Propositional uncertainty: |S| > 1 (Siskind 1996)
- ▶ Propositional noise: *s_{correct}* ∉ *S* (Siskind 1996)

≣ ୬୯୯

L	- Model
	L Input data

- Input data
 - Learner receives utterances paired with sets of situations
 - Interpretability requirement (O'Grady 1997)

Definitions

- Utterance U is a string of words w_1, w_2, \ldots, w_n
- S is a set of situations s
- ▶ Propositional uncertainty: |S| > 1 (Siskind 1996)
- ▶ Propositional noise: $s_{correct} \notin S$ (Siskind 1996)

- Model

- Representations

- Representations learned from input:
 - Constructions, cf. construction grammar (Goldberg 1995)

Definition

- Pairings of
 - a meaning (tree)
 - a string of constituents, each containing
 - a phonological form
 - a semantic pointer

(a)

Parsing

- Model tries to find which parts of U map to which parts of an $s \in S$.
- ▶ By creating derivations of constructions given *U*, *S*, using four interpretation mechanisms:
 - ► COMBINE: fill a phonologically open constituent of one construction with another construction
 - CONCATENATE: create a list of derivations
 - BOOTSTRAP: fill a phonologically open constituent with an unknown word
 - ▶ IGNORE: don't integrate the word in the derivation
- Constraints on derivations:
 - All constructions in a derivation should map to the same $s \in S$.
 - Each construction in a derivation maps to a different node of the meaning (isomorphy)

Parsing/generating

Parsing

- Model tries to find which parts of U map to which parts of an $s \in S$.
- ► By creating derivations of constructions given *U*, *S*, using four interpretation mechanisms:
 - ► COMBINE: fill a phonologically open constituent of one construction with another construction
 - ► CONCATENATE: create a list of derivations
 - BOOTSTRAP: fill a phonologically open constituent with an unknown word
 - ▶ IGNORE: don't integrate the word in the derivation
- Constraints on derivations:
 - All constructions in a derivation should map to the same $s \in S$.
 - Each construction in a derivation maps to a different node of the meaning (isomorphy)

Parsing

- Model tries to find which parts of U map to which parts of an $s \in S$.
- ► By creating derivations of constructions given *U*, *S*, using four interpretation mechanisms:
 - ► COMBINE: fill a phonologically open constituent of one construction with another construction
 - ► CONCATENATE: create a list of derivations
 - BOOTSTRAP: fill a phonologically open constituent with an unknown word
 - ▶ IGNORE: don't integrate the word in the derivation
- Constraints on derivations:
 - All constructions in a derivation should map to the same $s \in S$.
 - Each construction in a derivation maps to a different node of the meaning (isomorphy)

- Model

Parsing/generating

Figure: The COMBINATION mechanisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Model

Parsing/generating

Figure: The IGNORE, BOOTSTRAP, and CONCATENATE mechanisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parsing/generating

Best analysis of U

- Multiple derivations may map to the same parts of a situation
- Then: take them together as a parse t
- Best analysis of U is the most probable parse:

$$P(t) = \sum_{d \in p} P(d) \tag{1}$$

• Let a derivation
$$d = < c_1, c_2, \ldots, c_n >$$

$$P(d) = \prod_{i=1}^{n} P(c_i)$$
(2)

$$P(c) = \frac{c.count + 1}{\sum_{c' \in C} c'.count + |C| + 1}$$
(3)

Parsing/generating

Best analysis of U

- Multiple derivations may map to the same parts of a situation
- Then: take them together as a parse t
- Best analysis of U is the most probable parse:

$$P(t) = \sum_{d \in p} P(d) \tag{1}$$

Let a derivation
$$d = \langle c_1, c_2, \dots, c_n \rangle$$

$$P(d) = \prod_{i=1}^{n} P(c_i)$$

$$I(\mathbf{u}) = \prod_{i=1}^{n} I(\mathbf{u}_i)$$
 (2)

$$P(c) = \frac{c.count + 1}{\sum\limits_{c' \in C} c'.count + |C| + 1}$$
(3)

Parsing/generating

Best analysis of U

- Multiple derivations may map to the same parts of a situation
- Then: take them together as a parse t
- Best analysis of *U* is the most probable parse:

$$P(t) = \sum_{d \in p} P(d) \tag{1}$$

• Let a derivation
$$d = < c_1, c_2, \ldots, c_n >$$

$$P(d) = \prod_{i=1}^{n} P(c_i)$$
(2)

$$P(c) = \frac{c.count + 1}{\sum\limits_{c' \in C} c'.count + |C| + 1}$$
(3)

Parsing/generating

Best analysis of U

►

- Multiple derivations may map to the same parts of a situation
- Then: take them together as a parse t
- ▶ Best analysis of *U* is the most probable parse:

$$P(t) = \sum_{d \in p} P(d) \tag{1}$$

• Let a derivation $d = < c_1, c_2, \ldots, c_n >$

$$P(d) = \prod_{i=1}^{n} P(c_i)$$
(2)

$$P(c) = \frac{c.count + 1}{\sum\limits_{c' \in C} c'.count + |C| + 1}$$
(3)

- Learning on the basis of best analysis
- Idea of learning-as-processing (Langacker 2009)

Four learning mechanisms

- ASSOCIATE parts of U and parts of an s matching over recent U, s pairs (cross-situational learning)
- UPDATE count of used rules
- SYNTAGMATIZATION: store concatenation as a new construction
- PARADIGMATIZATION: store (more abstract) overlap between similar constructions as a new construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Learning on the basis of best analysis
- Idea of learning-as-processing (Langacker 2009)

Four learning mechanisms

- ASSOCIATE parts of U and parts of an s matching over recent U, s pairs (cross-situational learning)
- ▶ UPDATE count of used rules
- SYNTAGMATIZATION: store concatenation as a new construction
- PARADIGMATIZATION: store (more abstract) overlap between similar constructions as a new construction

- Learning on the basis of best analysis
- Idea of learning-as-processing (Langacker 2009)

Four learning mechanisms

- ASSOCIATE parts of U and parts of an s matching over recent U, s pairs (cross-situational learning)
- ► UPDATE count of used rules
- SYNTAGMATIZATION: store concatenation as a new construction
- PARADIGMATIZATION: store (more abstract) overlap between similar constructions as a new construction

- Model

Learning

Figure: Syntagmatization

Learning

Figure: Paradigmatization

Experimental set-up

Training

- ▶ Model incrementally presented with U, S pairs
- On the basis of Alishahi & Stevenson's (2010) generation procedure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- |S| = 2 (propositional uncertainty is 1)
- Non-correct $s \in S$ randomly generated
- ▶ 5 simulations of 2000 input items.

	_				
_	EX.	ne	rım	en	t.
		P ~			

-Experimental set-up

Comprehension experiment

- After every input item measure comprehension.
- Averaging over 50 input items in each of 5 simulations:

identification	What proportion of scorrect is identified
situation coverage	What proportion of the identified s the
	best parse maps to
utterance coverage	What proportion of U is not IGNORED in
	the best parse

	_				
-	EX.	ne	rım	ner	nt -
	_				

-Experimental set-up

Generation experiment

- After every 50 input items
- Present the model with 50 situations it has never seen
- Generation is parsing but only using COMBINATION
- Best parse is most probable, most expressive one
- ▶ The generated *U* is the yield of best parse given *s*.
- The actual $U \rightarrow$ the generation model.
- Average over 50 situations in each of 5 simulations:

length	Length of U given best parse
situation coverage	What proportion of s is expressed by the
	best parse
utterance precision	What proportion of the generated U cor-
	responds to actual U for s
utterance recall	What proportion of the actual U corre-
	sponds to the generated U

A Usage-Based Model of Early Grammatical Development

- Experiment

Comprehension experiment

Figure: Comprehension scores over time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Usage-Based Model of Early Grammatical Development

Generation experiment

Figure: Mean length of U generated over time.

æ

A Usage-Based Model of Early Grammatical Development

- Experiment

Generation experiment

Figure: Generation scores over time.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Comprehension

- Over time, more of *U* and *s* is understood
- ▶ Over time, *s*_{correct} is identified more frequently
- Model can deal with some uncertainty

Generation

- Length increases
- Utterance recall gradually goes up (omission)
- Utterance precision is high from the start (comission)
- Qualitative analysis: in paper

Comprehension

- Over time, more of *U* and *s* is understood
- ▶ Over time, *s*_{correct} is identified more frequently
- Model can deal with some uncertainty

Generation

- Length increases
- Utterance recall gradually goes up (omission)
- Utterance precision is high from the start (comission)
- Qualitative analysis: in paper

Concluding:

- goal 1 Increasing length of utterances in production: \checkmark
- goal 2 Interacting mechanisms (lexical & grammatical): \checkmark

Future work

- Conceptually:
 - Model is (admittedly) complex
 - Can we simplify the model?
- ► Empirically:
 - Test battery of studies on early transitive constructions, both comprehension and production
 - Can we simulate diverse experiments and observations?

Concluding:

- goal 1 Increasing length of utterances in production: \checkmark
- goal 2 Interacting mechanisms (lexical & grammatical): \checkmark

Future work

- Conceptually:
 - Model is (admittedly) complex
 - Can we simplify the model?
- Empirically:
 - Test battery of studies on early transitive constructions, both comprehension and production
 - Can we simulate diverse experiments and observations?

Concluding:

- goal 1 Increasing length of utterances in production: \checkmark
- goal 2 Interacting mechanisms (lexical & grammatical): \checkmark

Future work

- Conceptually:
 - Model is (admittedly) complex
 - Can we simplify the model?
- Empirically:
 - Test battery of studies on early transitive constructions, both comprehension and production
 - Can we simulate diverse experiments and observations?

Final words

Thanks to:

- The anonymous reviewers for valuable and thoughtful comments,
- The organization and participants of CMCL,
- Afra Alishahi for providing us with the code of the generation procedure,
- NWO (Netherlands) for funding Barend Beekhuizen,
- NSERC (Canada) for funding Afsaneh Fazly and Suzanne Stevenson.