Semantic Typology and Parallel Corpora Something about Indefinite Pronouns

Barend Beekhuizen Julia Watson Suzanne Stevenson

Department of Computer Science University of Toronto

CogSci 2017

- Modeling meaning requires representation space
- Typology: the more languages co-categorize two entities, the more conceptually similar they are (Gentner & Bowerman 2009; Beekhuizen et al. 2014).
- How to obtain such data?

Semantic typology: data acquisition

- Elicitation (Berlin & Kay 1969),
- Secondary sources (Haspelmath 1997),
- Primary text (Cysouw & Wälchli 2009)
 - translated parallel data (subtitles, bibles)
 - reflects actual usage patterns
 - can be used for more abstract domains

Semantic typology: data acquisition

- Elicitation (Berlin & Kay 1969),
- Secondary sources (Haspelmath 1997),
- Primary text (Cysouw & Wälchli 2009)
 - translated parallel data (subtitles, bibles)
 - reflects actual usage patterns
 - can be used for more abstract domains

Our goals:

- contributing to pipeline of extracting verbalization in many languages from parallel text
- compare text-based representations to representations from secondary sources

Case study: indefinite pronouns

- Cross-linguistic variation in term extensions
- Formalized using semantic map method (Haspelmath 1997)

Case study: indefinite pronouns

- Cross-linguistic variation in term extensions
- Formalized using semantic map method (Haspelmath 1997)

Case study: indefinite pronouns

- Cross-linguistic variation in term extensions
- Formalized using semantic map method (Haspelmath 1997)

Questions

- Despite great insight, limitations of approach
- Questions better answered with primary texts:
 - Q1 Are all functions equally frequent?
 - Q2 Are functions defined at the right level of granularity?
 - Q3 Do functions display discrete or fuzzy boundaries?
 - Q4 Are functions internally homogenous or do they display further internal structure?

Method

• Subtitles in 30 languages (9 families); parallelized and aligned

Method

- Subtitles in 30 languages (9 families); parallelized and aligned
- Extracted clusters of mutually aligned words

Method

- Subtitles in 30 languages (9 families); parallelized and aligned
- Extracted clusters of mutually aligned words
- Linearized clusters and annotated functions

Utterance	en	nl	es	sr	function
someone is here	someone	iemand	alguien	neko	SP
anyone got 5 billion?	anyone	iemand	alguien	neko	QU
she could beat anyone	anyone	iedereen	qualquier	neko	FC

Q1: Frequency of functions

- Split over PEOPLE (e.g., anyone, somebody) and THINGS (e.g., nothing, anything)
- What is the relative frequency per function?

Q1: Frequency of functions

- Split over PEOPLE (e.g., anyone, somebody) and THINGS (e.g., nothing, anything)
- What is the relative frequency per function?

	SP	NS	CD	QU	IN	DN	СР	FC
PEOPLE THINGS								
Overall	.24	.17	.06	.11	.03	.33	.00	.06

Table: Distribution of functions given ontological category.

SP specific CD conditional IN indirect neg. CP comparison NS DN FC. free choice non-spec. QU question direct negation

	SP	NS	CD	QU	IN	DN	СР	FC
PEOPLE THINGS								
Overall	.24	.17	.06	.11	.03	.33	.00	.06

- Is 8 the right number of functions?
- Evaluate with automatic clustering:
 - compare k-means clustering against annotated data

- Is 8 the right number of functions?
- Evaluate with automatic clustering:
 - compare k-means clustering against annotated data

	k =	2	3	4	5	6	7	8	9	10
PEOPLE		.20	.25	.41	.35	.34	.34	.32	.30	.32
THINGS		.30	.38	.47	.36	.35	.35	.33	.39	.33

• For k = 4, what do the clusters look like?

• For k = 4, what do the clusters look like?

Cluster	SP	NS	CD	QU	IN	DN	СР	FC
1	18	24	6	3	0	2	0	0
2	1	0	2	15	1	4	0	2
3	0	0	1	0	5	27	0	0
4	0	0	0	0	0	0	1	7

• For k = 4, what do the clusters look like?

Cluster	SP	NS	CD	QU	IN	DN	СР	FC
1	18	24	6	3	0	2	0	0
2	1	0	2	15	1	4	0	2
3	0	0	1	0	5	27	0	0
4	0	0	0	0	0	0	1	7

Q3: boundaries between clusters

Optimal Classification MDS (Croft & Poole 2008)

Q3: boundaries between clusters

- Optimal Classification MDS (Croft & Poole 2008)
- Clear clusters, but with 'bridges' between them

Q4: internal homogeneity

• Direct negation for PEOPLE in Estonian, Croatian, English, Slovene.

Internal scale: Emphatic > Subjects > Other functions

Recap

- cross-linguistic patterns of co-categorization cognitive representation
- studies indefinite pronouns in parallel usage data (subtitles)
- handcrafted model is both too fine-grained and too coarse grained
- usage data allows for fine-grained exploration of semantic contrasts

Recap

- cross-linguistic patterns of co-categorization cognitive representation
- studies indefinite pronouns in parallel usage data (subtitles)
- handcrafted model is both too fine-grained and too coarse grained
- usage data allows for fine-grained exploration of semantic contrasts

Technical extensions

- Scalability: pairwise alignments
- Use of non-parallel text (translationese!)

Recap

- cross-linguistic patterns of co-categorization cognitive representation
- studies indefinite pronouns in parallel usage data (subtitles)
- handcrafted model is both too fine-grained and too coarse grained
- usage data allows for fine-grained exploration of semantic contrasts

Technical extensions

- Scalability: pairwise alignments
- Use of non-parallel text (translationese!)

Cognitive plausibility

- E.g., ease of acquisition/order of acquisition
- Similarity/acceptability judgments of language users
- . . .

Thank you!