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Abstract

We model two patterns related to the acquisition of color terms
in Russian and English: children produce overextension errors
for some colors but not others, and language-specific distinc-
tions affect color discrimination in a non-linguistic task. Both
effects, as well as a reasonable convergence with adult linguis-
tic behavior, are shown by a Self-Organizing Map trained on
naturalistic input. We investigate the effect of different ways
of representing colors, i.e., as perceptual features or in terms of
the cognitive biases on categorization extracted from crosslin-
guistic color naming data. We also consider the influence of
color term frequency. Our results suggest effects of all three of
term frequency, cognitive biases, and perceptual features.

Keywords: color terms, language acquisition, linguistic rela-
tivity, Typological Prevalence Hypothesis

Introduction

Languages vary in how they carve up lexical semantic do-
mains; e.g., for situations where English uses the preposi-
tion on, Dutch uses aan and op. The crosslinguistic varia-
tion in lexical semantic divisions raises two interesting ques-
tions regarding the language user. First, are these various di-
visions all equally easy to learn, and if not, what drives the
difference in ease of acquisition? Second, does acquiring a
language-specific system affect other parts of cognition, a po-
sition known as ‘linguistic relativity’ (Gumperz & Levinson,
1996)? The two questions are related, as the acquisition of
language-specific semantic divisions can be expected to go
hand in hand with any extra-linguistic effects of acquiring
such systems.

In this paper, we use a computational model to study both
the acquisition of color terms and behavior on a non-verbal
color discrimination task. Our goal is to propose a unified ac-
count of these two phenomena by simulating them within a
single computational word-learning model. We explore what
factors drive the two phenomena, considering both the fea-
tures with which we represent color in the model and the
varying frequencies of the color terms.

As there is an understanding of how color is represented on
a perceptual level (e.g., Fairchild, 1998), we can use percep-
tual features as one representation of color. We also explore
features motivated by the Typological Prevalence Hypothe-
sis, which holds that crosslinguistically more common divi-
sions are more cognitively accessible and thus easier to learn
(Gentner & Bowerman, 2009). This exploration is motivated
by positive results of this approach in the domain of spatial
adpositions (Beekhuizen, Fazly, & Stevenson, 2014). Specif-
ically, we use a representation based on the crosslinguistic
biases in the divisions of the color space, derived from elici-
tation data (Kay, Berlin, Maffi, Merrifield, & Cook, 2009).

We find that both types of features yield a good fit to the
developmental pattern of color term acquisition as well as to
the behavioral pattern, with term frequency having an impact
on some results. In some cases, we find that using the features
together produces a better fit to human data, indicating that
both perceptual properties and crosslinguistic biases may play
a complementary role in learning a system of color terms.

Empirical findings and related work

Color term acquisition The development of children’s use
of color terms is slow, and across languages displays many
errors where children use one color term where adults would
use another (‘overextension errors’) (e.g. Harkness, 1973;
Roberson, Davidoff, Davies, & Shapiro, 2004). In line with
the Typological Prevalence Hypothesis, it has also been ar-
gued that the crosslinguistic patterns in color systems are
reflected in the pattern of acquisition — i.e., children learn
crosslinguistically rarer divisions later than more common
ones (Dougherty, 1978). Here, we look at two languages
for which detailed developmental color naming data is avail-
able, English (Bateman, 1915) and Russian (Davies, Corbett,
McGurk, & MacDermid, 1998).

Color discrimination Winawer et al. (2007) (henceforth:
WO07) ask whether having two primary color terms (sinij ‘dark
blue’ and goluboj ‘light blue’ in Russian) versus one (blue
in English) affects non-linguistic color discrimination. They
presented adult monolingual speakers of Russian and En-
glish with triplets of a stimulus color chip, an identical tar-
get chip and a different distracter. Participants were asked
to decide which of the target and distracter was identical to
the stimulus, and response latency was measured. On each
trial, the distracter was either ‘within’ the same (participant-
determined) category of dark or light blue as the stimulus, or
‘across’ the category boundary. Each distracter was also ei-
ther ‘near’ or ‘far’ from the stimulus chip on the color scale.

Three conditions were explored: with a verbal dual task,
a spatial dual task, or no interfering task. In the latter two
conditions, Russian speakers picked the target faster when
it was located ‘across’ the category boundary from the dis-
tracter, but only in the ‘near’ (harder discrimination) cases.
(Participants in both languages are slower at picking the tar-
get chip when it is ‘near’ the distracter compared to when it
is ‘far’) The across-category advantage in Russian was not
found under the verbal interference task, and English speak-
ers showed no effect of category in any condition, indicating
that the Russian category-advantage is a linguistic influence
on lower-level processing.



Related modeling work To our knowledge, the only other
attempt at modeling linguistic relativity is Colunga and
Gasser (1998), who train a neural network on artificial lan-
guages and semantic domains to study both the effects of ease
of acquisition and cognitive consequences of acquiring se-
mantic divisions. Our model has a similar architecture and
displays similar effects, but is trained on naturalistic data.

An earlier attempt at modelling color term acquisition is
Belpaeme and Bleys (2005), who present a multi-agent model
that represents color in an L*a*b* space (see below), although
they do not focus on the developmental trajectories of learn-
ers or on behavioral linguistic relativity effects. Our approach
can be considered as complementary, focusing on the cogni-
tion and behavior of an individual learner rather than on bi-
ases in the emergence of community-wide systems.

Beekhuizen and Stevenson (2015) used the Generalized
Context Model (GCM; Nosofsky, 1987) to simulate the de-
velopmental English color naming data of Bateman (1915).
While this approach showed interesting preliminary results,
GCM is limited in its ability to acquire language-specific at-
tention weighting. We require a model able to incrementally
acquire and represent varying attentional weights over sub-
intervals of the values of a dimension, possibly independently
of values on other dimensions. The Russian ‘blue’s are a case
where such representational potential is needed: attention to
a part of the luminance scale is heightened, but only for blue
hues. Self-Organizing Maps (SOMs; Kohonen, Schroeder, &
Huang, 2001), explored for language acquisition by, e.g., Li
and Zhao (2013), constitute a class of models that can capture
such effects, while also having the potential to show develop-
mental effects due to their incremental nature.

Our Computational Model

Self-Organizing Map
A Self-Organizing Map M is a neural network consisting of
an m X n grid of neuron cells [c|,c¢12,...cmn|, Where every
cell consists of a vector of feature values. At every iteration i
of training, an input stimulus s, with values for the same set of
features, is compared to all cells ¢ € M, and is subsequently
mapped to the cell to which it is most similar, called the Best
Matching Unit (BMU) cell for s, or ¢;. The values of ¢ as
well as its neighboring cells are then updated with the values
of s. This way, M will come to display a topology that reflects
the similarity among the input items.

Formally, ¢, = arg ICIéIAI/II deat(c,s) Where dfeqe(c, s) is the Eu-

clidean distance between the feature values of ¢ and s. All
cells are updated in proportion to their map distance from c;:

cﬂ'l = C;k +hj-k X (s—cj»k) €))
i d (C jk > C. )

That is, h;k yields the excitation of the neuron cell ¢ j; given a
center of activation at the coordinates of c;, taking into ac-
count their distance in the map grid given by dy,p. Here

o = [0,1] is a learning rate parameter, and &; the neighbor-
hood radius of c¢;, given by the exponential function ¢; =
Go X exp(— i), 09 and A¢ are constants defining the intercept
and slope of the function yielding the neighborhood radius.
To observe developmental effects, slow learning is needed,
and therefore we set oo = .05, 69 = 1, A; = 2000, and train
8 X 8 maps.

Feature Representations

We formulate acquisition of color vocabulary as a categoriza-
tion task that associates a color term (category label) with a
color stimulus (a set of color property features). An input
item consists of a representation of the properties of a Mun-
sell color chip (a property-feature vector) paired with a color
term (a term-feature vector). Each cell of the SOM represents
a learned association between a set of property-feature values
and a distribution over the terms in the term-feature vector.

The term-feature vector has length ||, where T is the set
of primary color terms in a language. To represent term t;
in an input item, the ith feature is set to a value a in [0,1],
and all others set to 0; e.g., in a system with 4 terms, input
t» =[0,a,0,0]. The parameter a (in our experiments set to .2)
reflects the relative importance of term features in training.
The term-feature vector of each cell of the SOM will come to
hold a distribution over terms, which we normalize to arrive
at a probability of a term for a cell, P(¢|c) (see below).

The property-feature vector represents the set of stimuli of
Munsell color chips, S, in one of two forms. First, we test
the idea that the cross-linguistic tendencies in the semantic
distinctions are telling of the extra- or pre-linguistic cognitive
biases of language learners (cf. the Typological Prevalence
Hypothesis). As in Beekhuizen and Stevenson (2015), we
operationalize this idea with Principal Component Analysis
(PCA) over the World Color Survey data (Kay et al., 2009),
which contains color terms for 330 Munsell color chips in
110 languages. The closeness of a pair of chips in the re-
sulting space reflects the frequency with which they are la-
beled with the same term, and the space thereby represents
the crosslinguistic tendencies to group chips under a particu-
lar term. (More details can be found in Beekhuizen & Steven-
son, 2015.) If the extension of a color term — i.e., the set of
chips labeled with that term — is spread widely over the PCA
space, it is assumed to be harder to learn than if a set of the
same size were spread less widely over the PCA space. We
refer to property features based on the PCA components as
the conceptual, or conc, features.

We also can represent the various color chips at a purely
perceptual level. We use the coordinates of the chips in
L*a*b* space, which is thought to encode the perceptual dis-
similarity between colors (Fairchild, 1998). This feature set
will be referred to as the perceptual, or perc, features.

Both the property-feature spaces were normalized such that
the mean for each feature is .5 and the values are in [0, 1].
SOMs are initialized with values of O for term features and
.5+ a very small random value for property features.




Sampling for training data

Input items are sampled as a pair of a color term ¢ € T and
a stimulus color chip s € S from the distribution P(z,s) =
P(s|r)P(r). We obtain the conditional probability distribu-
tions for P(s|¢) from adult elicitation data in English (Berlin
& Kay, 1969) and in Russian (Davies & Corbett, 1994).!
(For the latter data in Yxy coordinates, we convert those co-
ordinates into L*a*b*, and identify the Munsell chip with the
closest L*a*b* value.)

As one estimation of P(¢), we used the relative term
frequency over all color terms. For English, these were
taken from the child-directed speech portion of the Manch-
ester corpus (Theakston, Lieven, Pine, & Rowland, 2001) of
CHILDES (MacWhinney, 2000). For Russian, lacking a cor-
pus of child-directed speech of suitable size, we use the rel-
ative term frequencies reported in Vamling (1986).> We also
assess sampling according to a uniform distribution for P(r).
These two conditions are called corpus and uniform.

Experimental Methods

For all experiments, we run 30 simulations for each of the six
combinations of features={perc, conc,perc+conc} and
sampling={corpus,uniform}. At every test moment (ev-
ery 100 input items), we present the model with an unlabelled
color chip s (i.e., a property-feature vector with no term fea-
tures) and extract the most probable term that the model as-
sociates with those property features. We obtain the Best
Matching Unit for s as ¢; = arg ICIéIAI/II dieat(c, s), where only the

property features of ¢ are compared to those of 5. The model
response for s, term #;, is extracted from the probability dis-
tribution over the terms 7T for c¢;:

ty = argmax P(t|cy) )
teT

value(t, cg)
P(tley) = —————————— 4
(tles) Y e value(t', cy) @

where value(z, ¢;) is the value for feature ¢ in cell c;.

Evaluating linguistic convergence

To evaluate whether the model obtains an adult level of under-
standing of the color terms, we test it with color stimuli cor-
responding to the complete set of color chips Saquie for which
we have adult responses (|Saguit| = 49, |T| = 12 for Russian;
|Saguit| = 211,|T| = 11 for English). Model convergence with
adult linguistic behavior is then given by:

|Scorrect| (5)

scorec =
¢ ‘Sadult|

I'This formulation of P(s|t) is informative about the mapping of
terms to colors: a chip sy labeled half the time as blue is less likely
to be sampled for the term blue than a chip s, labeled 100% of the
time as blue. However, P(s|t) says nothing about how frequently
the colors are discussed with that label: if 51 is more frequent in the
world, usages of blue may refer to it more than to s. At this point
we know of no way to estimate a sampling of colors people refer to.

2The different sources of frequency data may differentially affect
outcomes in the two languages, an issue for future research.

at each test moment, where Scormect 1S the set of test stimuli
for which #; = tcorrect, and feorrect 1S the modal adult response
for the given chip. To avoid accidental local optima, we aver-
age scorec over the most recent 20 test moments. We let the
model run until it ceases to improve scorec for 10K inputs.

Evaluating linguistic development

In the child color naming data, several types of patterns are
observed: For some color stimuli, children produce hardly
any or no errors, whereas for others, overextensions are ob-
served, sometimes even more frequently than the correct
term. Our goal is to assess the fit between the model’s distri-
bution over terms, P(¢|c;) (Eqn. 4), for each stimulus s at var-
ious points in learning, and the relative dominance of terms
exhibited by children at various points in development.

To that end, we compare the ranking of terms based on
P(t|cg) to aranking derived from child elicitation data (ranked
by the number of children producing an error for that color in
Bateman, 1915 and Davies et al., 1998). For every color stim-
ulus presented to children from n age groups, we find the n
consecutive, equal-sized bins of test moments for which the
predicted ranking for that stimulus matches optimally the ob-
served ranking of each age group for that color.> Each bin
contains at least 5 test moments, to avoid finding unrealis-
tically narrow ‘age groups’ in the model data. The model
ranking of terms is given by P(t|cy) averaged over all test
moments in that bin, across 30 simulations. The low val-
ues in this pooled probability distribution (P(t|cs) < .05) are
rounded down to O to avoid diluting the ranking metric with
insignificant predictions; similarly, we consider only errors
occurring a minimum of 3 times in the child data. The two
— model and observed — rankings are then compared using
Kendall’s t;,, which we use as our evaluation measure.

Evaluating color discrimination

We take the final state of the SOM to correspond to adult
organization of the color terms. Reflecting the hypothesis that
linguistic knowledge affects the extra-linguistic task of color
discrimination, we take the closeness between the BMUSs of
two stimuli in our learned SOM to correspond to the degree of
difficulty people show in discriminating them. We convert the
20 stimuli of W07 into our representation of color properties,
yielding the vector Sgisc = [$1,--.,520]. Following W07, we
consider two stimuli s; and s; to be ‘near’ if j =i+ 2, and
‘far’ if j = i+4. To find the perceived distance between the
target and distracter, s¢, 54 € Sgisc, We take their SOM distance
dmap(Cs,,Cs, ) (as defined above). The greater the distance, the
easier to discriminate the target from the distracter.

We find the category boundary in the model by having it
predict the most likely Russian term per stimulus in Sgisc, and
placing the boundary between the last light blue (goluboj)

3Since the actual frequencies of colors and their co-occurrence
with terms is unknown (see footnote 1), and such patterns will cer-
tainly affect learning, we think it overly strict to require the model
to align all test stimuli in parallel. Future work will explore more
directly the impact of color frequencies on our model’s results.



Russian English
corpus uniform corpus uniform

perc .84 (.04) .89 (.03) .91 (.03) .93 (.02)

conc .86 (.03) .87 (.02) .92 (.02) .93(.02)
perct+conc .89 (.03) .92 (.03) .95(.02) .97 (.01)

Table 1: Results for convergence: mean and standard devia-
tion of scorec (Eqn. 5), over 30 simulations.
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Figure 1: P(t|s) over time for example stimuli in Russian for
(perc+conc, corpus) (a-d) and (conc, corpus) (e-f).

response and the first dark blue (sinij) response.* English
does not have these distinct terms, but the observed category
boundaries for Russian and English hardly differ according
to WO7. We thus use as the English boundary the mean loca-
tion of the Russian category boundary under the given com-
bination of features X sampling. A target—distracter pair,
si—sd, 1s considered ‘within’-category if s; and s4 are on the
same side of the boundary, and ‘across’-category otherwise.
Analogously to W07, the map distances for the 8 ‘near’ and
8 “far’ pairs closest to the category boundary were calculated
from the model for all simulations.

We evaluate whether the model’s behavior corresponds to
human behavior in W07 by seeing if the same significant ef-
fects are found: we compare the dmap(cy,,¢s,) values (using
t-tests) between near and far cases, and between within- and
across-category cases, and see whether these two interact.

Results: convergence and development

The model reaches its closest fit to adult behavior after some
20K (Russian) or 30K (English) input items. Table 1 shows
that the model captures adult behavior well; a naive baseline
always guessing the most frequent term would reach a scorec
of .20 (English) or .22 (Russian). We find that uniform sam-
pling achieves slightly closer to adult naming behavior. With

4We discard 4% of Russian simulations which did not have a
sequence of only goluboj followed by only sinij.

Russian English
corpus uniform corpus uniform
perc 91 .86 .96 95
conc 91 .89 91 .90
perc+conc .90 .89 98 .96
error-free learner .81 .81 95 .95

Table 2: Results for development (mean T, over stimuli and
age groups).

sampling=corpus, more frequent terms take up more of the
SOM, leaving less space for less frequent terms to capture
their full extension (and hence they are often mislabeled by
more frequent neighboring terms). One area for further ex-
ploration is whether learners have to be relatively immune to
frequency when processing color terms, as otherwise less fre-
quent color terms may not be strongly represented.

Furthermore, we find that there is little difference in scorec
in either language between the perc and conc features alone.
However, the model performs somewhat better with both used
together. This suggest that the cross-linguistic conceptual
space and the perceptual features are complementary, con-
tributing somewhat different information to learning.

Turning to the development results next (Table 2), we find
that the model has a good fit to observed patterns of develop-
mental behavior. An error-free learner — one always predict-
ing the correct term with a probability of 1 — has average 1,
values of .81 (Russian) and .95 (English), and so a large part
of the global score comes from the model correctly simulating
adult behavior rather than the overextension patterns. In most
cases, however, the model surpasses these scores, indicating
that it does capture some overextension patterns, especially in
Russian, which has many more such errors.

For English, the two perc settings give a better fit than
the conc settings. Considering the match with children’s de-
velopment on particular colors helps understand why. For
English, Bateman (1915) presented children (age 6—12) with
8 color chips. The model only displays the correct overex-
tensions of blue to PURPLE with (perc+conc, corpus) and
(perc, corpus), and fails to simulate the correct pattern for
ORANGE in both conc settings. The other color terms were
learned with the correct developmental pattern under all set-
tings: For BLACK, WHITE, RED, and BLUE, no or hardly any
overextensions were found either in children or in the model,
and the few observed overextensions for YELLOW and GREEN
were predicted in any parameter setting.

For Russian, we observe a difference between corpus and
uniform sampling. Davies et al. (1998) presented 3- to 5-
year-olds with 12 color chips. 3-year-olds label LIGHT BLUE
and PURPLE more frequently sinij ‘dark blue’ than the cor-
rect terms, but do not label DARK BLUE as goluboj ‘light
blue’ or fioletovyj ‘purple’ as often. Furthermore, 3-year-
olds more frequently use krasnyj ‘red’ than rozovyj ‘pink’
for PINK. The model predicts these effects completely under
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Figure 2: Results for modeling the discrimination experiment.

(perct+conc, corpus) (Fig. la-d), and generally predicts
the observed ranking better when using corpus, suggesting
that term frequencies explain some of the error pattern.

Feature sets display a subtle effect for Russian as well.
The asymmetry for DARK BLUE and LIGHT BLUE disappears
when we train on perc, as DARK BLUE and LIGHT BLUE are
(too) easily discriminated in the perceptual space. This is dif-
ferent for the conceptual features: as many languages group
DARK BLUE and LIGHT BLUE under one term, the inferred
cognitive bias is to group them together. Figures le-f show
that for conc, the asymmetry is present, but goluboj never
gets fully learned. A combination of both feature sets thus
seems necessary to understand this effect: perceptual dissim-
ilarity is needed to discriminate them, but cognitive biases
bias the learner against forming two categories. The asym-
metry may then emerge because of the slightly higher term
frequency of sinij (.08) over goluboj (.06).

Results: discrimination

Figure 2a summarizes the findings of W07 in their color dis-
crimination task (Ist column), along with an indication of
whether the model results match those findings (2nd column).
For example, the entry for Russian of “near-within > near-
across” means that people found the near-within cases harder
to discriminate than the far-within cases (a statistically-
significant difference); “far-within ~ far-across” means the
difference between those two cases for people was not sta-
tistically significant. For the former, our model also found
a statistically significant effect in the same direction, and for
the latter, the lack of an effect in the same direction.’

The fact that the model matches “near > far” for both
languages supports our assumption that map distance in the
learned SOM is a good proxy for discriminability of stimuli.
Importantly, the model matches the main finding of W07 that
distracters in a different category from the target are more

SRecall that a closer SOM distance, dmap(Cx, ,Cs, ), means the tar-
get and distracter stimuli s;, s are “harder to discriminate”.

easily discriminated than distracters in the same category,
for Russian but not for English (the “within > across” and
“within =~z across” rows in Figure 2a).

To illustrate why this happens, Figure 2b presents a typ-
ical converged map for English and for Russian. For En-
glish, chips s1:s4 are mapped to the cell marked with (2), and
chips s5:s20 to the cell marked with (1). Because the cate-
gory boundary is placed between s11 and 512 of Sgigc, all pairs
of targets and distracters are mapped to the same cell (1),
whether across-category or within, and such pairs are indis-
criminable for the learner. For Russian, the different shades
of blue cannot be compressed on the SOM as much as in En-
glish, because there are two terms that need to be discrimi-
nated: English blue is the most likely term in 5 cells, whereas
Russian sinij and goluboj combined are the most likely terms
in 10 cells. Thus in Russian, we see that the 20 Sgisc stimuli
are mapped to a larger part of the SOM (cells (1)—(4) in that
map) than the English stimuli, and distances across the cate-
gories — from cells (1)-(2) to (3)-(4) — are further than within
categories (within (1)-(2) or within (3)-(4)).

Finally, the model generally fails to predict the empiri-
cal interaction whereby Russian displays a significant within-
across difference for near but not far cases. Under all settings,
the model predicts both differences to be significant. We do
find a trend in the right direction: for all settings, the within-
across difference is greater in the model for the near cases
than for the far cases.

Discussion

In this paper, we looked at the developmental pathway of
color term acquisition and the effects of acquiring the color
term system of a particular language on a non-verbal dis-
crimination task. A Self-Organizing Map (SOM) trained on
naturalistic input models three effects: (1) some patterns of
overextension errors in linguistic development and (2) subse-
quent convergence in Russian and English, as well as (3) a
higher ability to discriminate light blue from dark blue stim-
uli in Russian, but not English. Our model thus provides a



mechanistic conception of learning that gives a unified ex-
planation of both linguistic development and linguistic rel-
ativity. The idea that between-language variation is repre-
sented by the varying amount of information compression on
the SOM (due to the different patterns of words with stimuli
across languages) gives us an explanatory principle that could
be applied to domains beyond color.

We asked whether possible cognitive biases inferred from
crosslinguistic categorization tendencies (cf. Gentner & Bow-
erman, 2009, reflected in our ‘conceptual features’, play a
role, or whether perceptual features of color best explain the
effects. Both feature sets contribute to the explanation of lin-
guistic development: in some cases (naming PURPLE in En-
glish), the error pattern is predicted only when the perceptual
features are present. For others, leaving out the conceptual
features hurts the fit with the observed data (naming DARK
BLUE in Russian), suggesting that these biases do play a role.

We also investigated frequency effects: The model fails
to predict common overextension patterns in both languages
when not taking term frequency into account. Nonetheless,
sampling on the basis of corpus frequencies makes the model
converge less well to adult behavior for infrequent terms, sug-
gesting that, over development, learners may need to be de-
creasingly sensitive to term frequency.

One issue we did not explore is different initializations of
the SOMs. As children experience color prior to acquiring
terms for them, it is possible that the map is already ‘pre-
organized’ by exposure to color stimuli without associated
color terms. We plan on studying further whether such pre-
linguistic exposure affects the developmental patterns.

Finally, we looked at the converged states of the SOMs
in predicting color discrimination behavior across languages,
finding a weak preference for models trained on perceptual
features. Since we are able to track the development of the
SOM, we can also investigate the effect of language-specific
lexical semantic systems on extra-linguistic behavior over de-
velopmental time (see, e.g., McDonough, Choi, & Mandler,
2003, for such developmental effects in another domain). In
the future, we plan to explore suitable semantic domains for
evaluating how well our model simulates linguistic relativity
effects over the course of acquisition.
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