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Abstract

We explore the following two cognitive questions regarding crosslinguistic variation in lexical

semantic systems: Why are some linguistic categories – i.e., the associations between a term

and a portion of the semantic space – harder to learn than others? How does learning a

language-specific set of lexical categories affect processing in that semantic domain? Using a

computational word-learner, and the domain of color as a testbed, we investigate these

questions by modeling both child acquisition of color terms and adult behavior on a

non-verbal color discrimination task. A further goal is to test an approach to lexical semantic

representation based on the principle that the more languages label any two situations with the

same word, the more conceptually similar those two situations are. We compare such a

crosslinguistically-based semantic space to one based on perceptual similarity. Our

computational model suggests a mechanistic explanation for the interplay between term

frequency and the semantic closeness of learned categories in developmental error patterns for

color terms. Our model also indicates how linguistic relativity effects could arise from an

acquisition mechanism that yields language-specific topologies for the same semantic domain.

Moreover, we find that the crosslinguistically-inspired semantic space supports these results at

least as well as – and in some aspects better than – the purely perceptual one, thus confirming

our approach as a practical and principled method for lexical semantic representation in

cognitive modeling.
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More than the eye can see: A computational model of color term acquisition and color

discrimination

Introduction

Languages vary in how they carve up lexical semantic domains: that is, sets of terms in

different languages frequently differ in the mapping of the terms to parts of the semantic

space. To give a few examples, whereas English describes all spatial relations of SUPPORT

with on, Dutch makes use of aan (TENUOUS SUPPORT) and op (STABLE SUPPORT).1 For

interclausal coherence relations covered by and and but in English, Tuvaluan relies on a single

conjunction kae (Mauri, 2008). More complex, many-to-many mappings between

language-specific categories are also attested (e.g., Berlin & Kay, 1969; Kay, Berlin, Maffi,

Merrifield, & Cook, 2009; Malt, Sloman, & Gennari, 1999). For instance, Fig. 1 shows how

four languages carve up a small region of the color space, and illustrates many-to-many

mappings between the language-specific categories (Kay et al., 2009). These and numerous

other such examples suggest that the vocabulary of a domain establishes a set of

language-specific semantic categories over the domain; consequently, much research has

investigated how the structure of lexical categorization differs across languages.

The crosslinguistic variation in lexical categorization raises important cognitive questions.

One such question concerns how these various lexical semantic categories are acquired: Are

they all equally easy to learn, and if not, what drives the difference in ease of acquisition? The

semantic category boundaries across languages seem to vary widely, but are also characterized

by certain commonalities. Such crosslinguistic commonalities have been taken to reflect

underlying conceptual similarity: i.e., if there are many languages that use a single term for

two semantic situations, those situations are likely very similar (Anderson, 1982). Taking this

insight one step further, the Typological Prevalence Hypothesis proposes that

crosslinguistically more-prevalent semantic categories are easier to learn than less-prevalent

categories (Bowerman, 1993; Gentner & Bowerman, 2009). In short, crosslinguistic patterns

1Throughout the paper, we use italics to indicate terms in a language (e.g., red), small caps to refer to semantic
categories (e.g., RED), and single quotes to provide glosses in English (e.g., krasnyj ‘red’).
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in lexical semantic categorization appear to reflect cognitive biases that influence the

acquisition of the terms in a language. On the other hand, for the domain of color, it has been

argued that basic perceptual properties suffice to explain the relative ease of learning the

various mappings between color terms and perceptual stimuli (Dougherty, 1978; Harkness,

1973; Pitchford & Mullen, 2003). This raises the issue of whether crosslinguistic analysis in

this domain captures relevant biases that go beyond basic color perception. In this paper, we

focus on modeling a particular aspect of color term acquisition – namely, children’s

overextensions of color words to stimuli for which adult speakers would use other terms – to

explore how these factors play a role in developmental error patterns.

A second important question concerns the nature of the cognitive effects of acquiring a

language-specific set of lexical semantic categories: Does acquiring such a system influence

cognitive processing in that domain (a position widely attributed to Whorf 1956), or is the

access/use of concepts unaffected by the system of words used to refer to them? Over the last

20 years significant evidence has accumulated supporting the notion of linguistic relativity –

i.e., attesting that the semantic categories reflected in the vocabulary can influence conceptual

categorization and/or access (e.g., Everett 2013; Gumperz and Levinson 1996; McDonough,

Choi, and Mandler 2003; though see Pinker 2007, for an alternative view). In the domain of

color in particular, the early study of Brown and Lenneberg (1954) showed that a measure of

color-naming agreement across informants predicted color recognition behavior better than a

purely perceptual measure of color distinctiveness. More recently, a number of studies have

shown various influences of linguistic color categories on the processing of color stimuli (Bae,

Olkkonen, Allred, & Flombaum, 2015; Roberson, Davidoff, Davies, & Shapiro, 2005;

Roberson, Davies, & Davidoff, 2000; Winawer et al., 2007). Here, we model empirical data

on linguistic relativity in the lexical semantic domain of color, and again consider the factors

that might underlie the observed behavioral effects.

To investigate the above two questions, we use a computational word-learner to model both

child acquisition of color terms and adult behavior on a non-verbal color discrimination task.

Specifically, we explore the factors underlying both the observed developmental errors in

4



children, and the subsequent linguistic relativity effects found when adults draw on their

learned knowledge. By studying both learning and use of knowledge in one computational

model, we aim to give a unifying explanation of the factors that influence the two.

Our primary focus is a comparison of two different semantic representations of the color

domain, to see which best captures human behavior in our computational model. The first is a

perceptual semantics – i.e., one based on the properties of human color perception, which

have been proposed to be responsible for patterns in child acquisition of color terms. If the

lay-out of color categories in a color appearance model plays a central role, as many accounts

have it (Dougherty, 1978; Harkness, 1973; Pitchford & Mullen, 2003), training a model on

pairings of a color term and a color stimulus from this appearance model should suffice to

explain observed developmental patterns.

We contrast this perceptual approach with a crosslinguistic semantic representation inspired

by the Typological Prevalence Hypothesis. In particular, we build on previous work

(Beekhuizen, Fazly, & Stevenson, 2014) suggesting that crosslinguistic elicitation data can

form the foundation for a vector-based representational space that reflects the cognitive biases

in how languages carve up a semantic domain into lexical categories. In line with the

Typological Prevalence Hypothesis, such a representation may capture the

linguistically-relevant aspects of color categorization, rather than purely perceptual ones. We

then hypothesize that using the crosslinguistically-inspired color space in our model may yield

a better match to human behavior in both color term acquisition and color discrimination. In

this way we explore whether perceptual factors alone can explain these effects, or whether

other kinds of cognitive biases come into play. Even if the crosslinguistic elicitation data does

not show an improvement over the perceptual space, there is another factor motivating our

alternative approach to a semantic space: namely, that its basis in crosslinguistic elicitation

data means such representations can be derived for domains for which perceptual features are

difficult or impossible to obtain (cf. Beekhuizen, Watson, & Stevenson, 2017).

For completeness, we also study the relative contribution of color term frequency in simulating

both the developmental and relativity tasks. Rather than statically correlating term frequency

5



with ease of acquisition, as has been done in statistical studies (e.g. Yurovsky, Wagner, Barner,

& Frank, 2015), we manipulate term frequency in our incremental learning model. By

modeling both term frequency effects and the different approaches to semantics within a

unified model of acquisition and use of knowledge, we aim to reveal how these factors interact

in both developmental errors and linguistic relativity behaviors in the domain of color.

Color terms: acquisition and linguistic relativity

Here, we discuss literature on error patterns in children’s color term acquisition and on

linguistic relativity effects in the domain of color, as well as related modeling approaches.

Much research has considered the patterns of acquisition of basic color terms – i.e.,

monomorphemic terms, such as red or purple, with the following characteristics: they can be

applied to a wide range of objects, are psychologically salient to speakers of the language, and

have an extension that is not the subset of an extension of another color term (Berlin & Kay,

1969). It is well known that the development of children’s use of color terms is generally

slow; e.g., English children typically are only able to accurately use four of the basic color

terms (blue, red, green, and yellow) by 4 years old (see Bartlett, 1978; Bornstein, 1985;

Pitchford & Mullen, 2003; Soja, 1994, and references cited therein). The difficulty of learning

color vocabulary leads to omissions and errors that can be informative about the mechanisms

and representations involved in learning the terms of this domain.

Most of the above developmental studies focus on the order in which color terms are learned,

where the ‘acquisition’ of a color term generally means that the term is used for the

appropriate color category and not for any others. These approaches have shed light on the

potential role of perceptual factors by linking them to the ease or difficulty of learning certain

color terms. Far fewer studies have been concerned with the exact nature of the error patterns

in color term learning, and mainly identify that errors are found between color categories that

are adjacent in hue or saturation (Bartlett, 1978; Pitchford & Mullen, 2003; Shatz, Behrend,

Gelman, & Ebeling, 1996). Very little work has looked at finer-grained patterns – such as the

overextension or underextension of color terms – and it is these errors that have the potential
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to reveal more nuanced influences on color term acquisition. For example, perceptual

closeness may explain why two color terms are confusable, but asymmetric overextension of

one to the other – e.g., using blue for PURPLE but not purple for BLUE, as observed for

instance by Istomina (1960) and I. Davies, Corbett, McGurk, and MacDermid (1998) –

indicates other factors play a role in color term learning.

Moreover, while we can identify, for example, that certain perceptual properties correlate with

the color naming behavior of children, we do not fully understand how these biases are

operational in the acquisition process. Computational modeling provides a way to explore the

interaction of various factors and the mechanisms that bring them to bear on learning. For

example, Yurovsky et al. (2015) present a mathematical model that identifies several factors

that underlie under- and overextension of color categories; importantly, color term frequency,

as well as the size and salience of the perceptual category, all play a role. However, their

approach is not a learning model, and so does not address how these factors play out in the

acquisition process itself. Belpaeme and Bleys (2005) do propose a model of color term

acquisition over a perceptual semantic space, but this work focuses on biases in the emergence

of community-wide systems, and does not consider the developmental trajectories of

individual learners. The next step is to develop an actual cognitive processing model – one

that incrementally learns from input items consisting of a color term and a representation of a

color stimulus, and evaluate if and how the proposed factors do indeed affect the

developmental patterns of errors it displays.

Ideally, such a computational cognitive model should be subject to further scrutiny: that is, we

must also consider whether applying the acquired knowledge in the model shows behavioral

effects seen in adults. The linguistic relativity hypothesis points to some interesting

hypotheses in the area of color. If the lexical semantic categories of a language can influence

perceptual discriminability of those categories, we can expect there to be behavioral

differences between speakers of languages with different sets of basic color terms. Given a

computational model in which certain factors play a role in matching human developmental

patterns, we would want to see whether and how those same factors influence the learned
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knowledge and its use in such relativity cases.

For example, in studies on Russian-speaking and English-speaking participants, Winawer et

al. (2007) investigated the behavioral effect of having two basic color terms in Russian – sinij

(‘dark blue’) and goluboj (‘light blue’) – for a region of color space that has a single basic

term in English – blue. Their experiments demonstrated that Russian speakers are faster in a

non-linguistic color discrimination task when the colors to be distinguished cross their basic

color-term boundary, where English speakers (lacking a basic color term distinction) show no

such effect. Roberson and colleagues also showed for multiple languages that subjects are

able to discriminate color stimuli better around their own lexical category boundaries

(Roberson et al., 2005, 2000). Bae et al. (2015) further demonstrate ‘perceptual magnet’

effects, whereby subjects perceive a color as more similar to the average member of a category

(a region labeled by a basic color term) than it actually is.

An interesting recent mathematical model of some linguistic relativity effects is that of Cibelli,

Xu, Austerweil, Griffiths, and Regier (2016). In their category adjustment model, two sources

of information are combined in a color naming task in response to a color stimulus: the (noisy)

perception of the color stimulus and the representation of the color category (a region of color

associated with a linguistic term) that the stimulus is nearest to. This approach enables them to

account for the category boundary and perceptual magnet effects of Roberson et al. (2005,

2000) and Bae et al. (2015). However, the Cibelli et al. (2016) model has no learning

component that incrementally acquires the color category knowledge, so it is unable to explore

the effects of various factors on both acquisition and use of color vocabulary knowledge.

To our knowledge, the neural network approach in Colunga and Gasser (1998) constitutes the

only previous attempt at an integrated learning and processing model of linguistic relativity: A

neural network is incrementally trained on artificial languages and artificial semantic domains

to study both the ease of acquisition of lexical semantic categories and the cognitive

consequences of the learned knowledge. The model shows interesting effects, such as less

coherent categories being harder to acquire, as well as heightened attention in the model to the

conceptual dimensions relevant to the category system of a particular language. However,
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because it is applied on artificial languages and toy semantics, it remains to be shown whether

the demonstrated effects are generalizable to actual lexical semantic systems over real

semantic domains.

The model we present in this paper constitutes (to our knowledge) the first computational

cognitive processing model to simulate acquisition and linguistic relativity effects when

trained on naturalistic inputs and tested on empirical data. Like the approach of Colunga and

Gasser (1998), our model has a distributed network architecture and displays similar effects.

However, unlike theirs, our model is trained on data that captures the meanings of the actual

semantic domain of color and reflects corpus frequencies of color term usages. Moreover, we

compare the model output to human data from experimental studies: the child developmental

patterns in Bateman (1915) (for English) and in I. Davies et al. (1998) (for Russian), as well as

the differential color discrimination effects between English and Russian speakers in Winawer

et al. (2007).

The current proposal builds on our earlier work (Beekhuizen & Stevenson, 2015), which used

the Generalized Context Model (Nosofsky, 1987) to simulate the developmental English color

naming data of Bateman (1915). While this approach showed interesting preliminary results,

we subsequently adopted a different learning model – a Self-Organizing Map (SOM;

Kohonen, Schroeder, & Huang, 2001). This model framework, which has been previously

explored for word learning (e.g., Li & Zhao, 2013),2 has several advantages for our purposes.

In particular, the SOM naturally captures distances among input stimuli as map distances, an

advantage for modeling color discrimination. Given that the map layout captures the typology

of the semantic space in this way, SOMs are also useful for interpretation and visualization of

the learned knowledge. Preliminary results with our SOM model were explored in

2Li and Zhao (2013) are focused on other aspects of word learning than we are here. The main differences
between their approach and the one we propose below are as follows. (1) In their approach, an input item consists
of a word that is always paired with the same semantic representations. In ours, input items consist of words
paired with different semantic representations, and one of the purposes is to see how the model captures the range
of color hues associated with a single color word. (2) Their model has distinct maps for the word forms and
the word meanings, linked with Hebbian connections. Our model is a single map, onto which both word form
and meaning are jointly projected, with the goal of seeing how the associated word forms influence the color hue
topology of the map. These differences in design reflect the different acquisition phenomena these models are
intended to simulate.
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Beekhuizen and Stevenson (2016). The present work significantly extends the experiments

and analyses with this model over that pilot investigation in two ways. First, here we use a

much stricter evaluation criterion for the developmental results: the model is evaluated across

all stimulus-response pairs simultaneously, whereas in Beekhuizen and Stevenson (2016) the

model was evaluated per stimulus. Second, here we test the model across a range of SOM

parameter settings, thus evaluating the robustness of the model to variations in these.3

The Computational Model

We approach our two issues of interest – the error pattern in color vocabulary acquisition and

the linguistic relativity behavior in color discrimination – by simulating a human learner using

a computational category learner. Specifically, as in Belpaeme and Bleys (2005) and Cibelli et

al. (2016), we formulate the learning and use of color vocabulary as a categorization task that

associates a color term – which is a semantic category label – with a color stimulus – which is

a set of semantic features representing the stimulus. While training the model, we can record

the errors in its production of color terms in response to color stimuli, and compare the

model’s error patterns to developmental errors in children. We can also simulate a color

discrimination task using the trained model and compare it to adult behavior in such a task.

In this section, we first describe the category learning model. We then discuss the two

semantic representations of color stimuli that we compare in our experiments – a perceptual

representation and a crosslinguistically-derived representation – as well as the two ways we

sample input terms in order to explore frequency effects on learning.

Learning color categories

For our categorization model, we use a neural network called a Self-Organizing Map (SOM;

Kohonen et al., 2001). Our SOM M is a square matrix of m×m cells [c11, c12, . . . cmm]; we

refer to the dimension of the map with the parameter size – i.e., in our simulations, m is set to

3The different approaches to evaluation make differences in the results hard to compare across the pilot and
current studies. Foreshadowing the results here, we note that the most robust patterns are found in both experi-
ments, but that the current set-up allowed us to evaluate the model performance more appropriately.

10



varying values of size. Each training input to the model is a vector i of feature values, some of

which encode color terms and some of which encode the associated color semantics (i.e.,

properties of color stimuli). Every cell in the map, cjk, is a vector whose dimensions are the

same features, such that color vocabulary (a set of term–color associations) is learned by

jointly projecting pairs of term and semantic features from the inputs i onto the SOM in an

aggregate representation in the map cells. To effect this, the values in the map cells gradually

change in response to the training input. (We use cn
jk to refer to the value of cell cjk at time n

when we need to distinguish the cell values over time.) Fig. 2 illustrates a SOM and input

item.

At each iteration n of training, an input i is compared to all cells c ∈M , and is subsequently

mapped to the cell to which it is most similar, called its Best Matching Unit, or BMU (i):

BMU (i) = argmin
c∈M

dfeat(c, i), (1)

where dfeat is the Euclidean distance between the feature value vectors of c and i.

The feature values of i are then used to update the feature values of BMU (i) as well as (to a

lesser extent) those of its neighboring cells in a radius around BMU (i). In this way, over time

M will come to display a topology that reflects the similarity among the input items.

Assuming input i at time n, all cells cn
jk are updated to yield cn+1

jk in proportion to their map

distance from BMU (i):

cn+1
jk = cn

jk + hjk × (i− cn
jk), (2)

Here the vector difference between the input and the cell, i− cn
jk, can be thought of as an error

signal (the discrepancy between the cell cn
jk and the input i) which is used to “nudge” the

features values of cn
jk toward the values of i, according to the weight hjk, which reflects the

distance of cn
jk from BMU (i):

hjk = α× exp
(
− dmap(cjk,BMU (i))

2× σ2

)
. (3)
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That is, hjk yields the excitation of the cell cjk given a center of activation at the coordinates

of BMU (i), taking into account their Euclidean distance in the map grid, given by dmap. Here,

α = [0, 1] is a learning rate parameter, and σ is the neighborhood radius of BMU (i), which

determines the extent of the neighborhood of cells affected by the feature values of i. The

settings of α and σ (and the adjustment of σ during learning) are discussed in the section

‘Model simulations and parameter settings’.

To test the model, we can simulate the human phenomena of interest, both during and

following training, by periodically presenting the model with test inputs. To assess whether

the model converges, and to compare its developmental patterns to children’s color naming

over time, we need to mimic a color naming task by seeing what color term(s) the model

associates with each color stimulus at various points in time. To do so, we present the model

with a vector s of semantic features representing an unlabelled color chip – i.e., an input

without the term-feature vector. We then find BMU (s) using Eqn. (1), but only comparing the

semantic features of each map cell c to color stimulus s. The term features of BMU (s) yield a

distribution over possible color term responses to the color stimulus s; that is, we can calculate

P (t|s) for all terms t as follows:

P (t|s) = value(t,BMU (s))∑
t′∈T value(t′,BMU (s)) , (4)

where value(t,BMU (s)) is the value for feature t in cell BMU (s). To determine a single best

response in the color naming task, we take the term with the highest conditional probability as

the response term ts for s:

ts = argmax
t∈T

P (t|s). (5)

The ability of people to discriminate two colors is correlated with the distance between the

two stimuli – i.e., perceptually closer stimuli are harder to distinguish. Thus, to mimic a

discrimination task in our model between two color stimuli sj and sk (again, comprised solely

of semantic features), we need to extract the model’s assessment of their distance according to

its learned knowledge. We can consider the distance in the map between their two
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Best-Matching Units – i.e., dmap(BMU (sj),BMU (sk)) – as representing the discriminability

of the stimuli within the model. More detail on the methods used to evaluate the model are

provided in the respective results sections below.

The term and semantic feature spaces

Formally, each cell of the model and each training input to the model is a concatenation of two

vectors, a term-feature vector representing a color term and a semantic-feature vector

representing the semantic properties of a color chip. Each cell of the SOM thus represents a

learned association between a set of semantic-feature values and a distribution over the terms

in the term-feature vector.

The term-feature vector has length |T |, where T is the set of basic color terms in a language.

To represent the uth term tu of T within an input item, the uth feature is set to a value

a ∈ (0, 1], and all other term features set to 0. For example, in a language with four basic color

terms, the term vector for input term t2 is [0, a, 0, 0]. The parameter a reflects the relative

importance of term features (vs. semantic features) in training. The term-feature vector of

each cell of the SOM will come to hold a distribution over terms; see the example cell in

Fig. 2. As shown in Eqn. (4), the term vector of BMU (s) can be normalized to arrive at a

probability P (t|s) for each term t given a color stimulus s.

Turning to the semantic features of a color chip, recall that one of our goals in this paper is to

compare two different semantic representations with regard to whether they enable the model

to match human behavior in color acquisition and discrimination. First we consider a semantic

representation based on perceptual properties of color. The L∗a∗b∗ space is a color appearance

model thought to encode the human perceptual dissimilarity between colors (Fairchild, 1998),

and so we adopt this as our perceptual semantic representation. The 3-dimensional L∗a∗b∗

space specifies values for the dimension of luminance (L∗), and for two chromatic dimensions

– a RED–GREEN axis (a∗), and a BLUE–YELLOW axis (b∗).4

4 Recall that in Eqn. (1), we take the Euclidean distances over map and input feature vectors as a first step
in learning. A reviewer noted that problems with Euclidean distances over the L∗a∗b∗ color space have been
identified, as in Komarova and Jameson (2013). While we are aware of such (and other) issues with this color
appearance space, L∗a∗b∗ was intended to be a geometric space in which Euclidean distances are meaningful,
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While such a perceptual representation might be presumed to be adequate for a perceptual

domain like color, there is suggestive evidence that linguistic categorization plays a role in

how we process colors (Brown & Lenneberg, 1954). For our second semantic representation,

we thus consider a method that draws on lexical semantic categorizations. Specifically, we

adopt the method of Beekhuizen et al. (2014), who propose an approach for creating a

crosslinguistic vector space for a semantic domain. The resulting semantic space is intended

to reflect the set of cognitive biases for that domain in human language learners – i.e., the

underlying tendencies in carving up a semantic domain into categories labeled by lexical items

– following the Typological Prevalence Hypothesis (Gentner & Bowerman, 2009). For the

domain of color this would mean that if many languages place a lexical boundary in the same

region of the color space, this region, for some reason, attracts semantic categorization

boundaries, or forms a natural location for such a boundary because it lies between two salient

color areas.

As proposed by Beekhuizen et al. (2014), we use crosslinguistic elicitation data over

situations in a semantic domain to form the basis of a vector-based semantic representation of

those situation meanings. In this case, the situations S are 330 Munsell color chips, for which

the World Color Survey (Kay et al., 2009) provides elicitation data in 110 languages, with

around 25 participants per language.5 Using this data, for each language l in the sample L, we

can form a conditional probability distribution Pl(t|s) over the terms t ∈ Tl (the basic color

terms in l) for every semantic stimulus s ∈ S (each color chip). The probability distribution

Pl(·|s) is based on the relative frequency of the term responses in l to color chip s over all

informants. Each color chip s can then be represented as a vector that is the concatenation of

these observed conditional probability distributions for all languages in the data; see Figure 3.

and remains a standard in cognitive science (e.g., cf. its use in Bae et al., 2015; Regier, Kay, & Khetarpal, 2007;
Wagner, Dobkins, & Barner, 2013; Webster & Kay, 2012).

5The 110 languages in the sample are spoken in non-industrialized cultures and are unwritten. Following Kay
et al. (2009), we assume that the sample is sufficiently broad to capture the range of color distinctions made in
language. While we acknowledge that the salience of certain discriminations in the color space may vary as an
effect of culture (and more generally, of the ecology the speakers of a language inhabit), we expect that this is not a
major issue here. To preview our results, we find that the Self-Organizing Map learns the color term systems of two
languages spoken in industrialized cultures when using our feature space derived from the color discriminations
made in the 110 languages of the World Color Survey.
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Given the World Color Survey data, this approach yields 2339 semantic features (one for each

color term in each language) for a color chip s. The intuition is that two color chips, si and sj ,

are more similar the more they are referred to with the same terms by subjects within each

sampled language – i.e., the more similar Pl(·|si) is to Pl(·|sj), for all languages l ∈ L. If the

use of terms for two color chips is more similar, the vectors (the rows in Fig. 3) for these

colors are more similar too. For example, according to this intuition, color chips s1 and s2 are

more similar to each other than to chip sn in Fig. 3.

It would be possible to use each of these two semantic spaces – L∗a∗b∗ and the crosslinguistic

approach – to represent the Munsell chips used as input stimuli in our model. However, the

two representations have a widely different number of feature dimensions (3 vs. 2339). As

such, a direct comparison would not isolate the effects of the information in the feature spaces

from the effects of dimensionality. To achieve comparable semantic spaces, with feature

vectors of the same dimension, we cast the two feature spaces into a common format. For each

of the semantic representations, we use a distance matrix between all pairs of color chips in S

(chips in the Munsell set) to create comparable vector spaces. Intuitively, rather than encoding

a color chip si directly as its corresponding vector in the semantic space, we encode it as a

vector of distances to every other color chip sj , as calculated in the semantic space.

Specifically, every entry di,j in the |S| × |S| distance matrix D for a feature space contains the

Euclidean distance between color chips si and sj in that feature space. It is these matrices that

we use as semantic features in the model: a color chip si is represented as row Di,· – a vector

of |S| elements – from the distance matrix over the underlying semantic space. In this way,

each color chip s is represented not as an absolute location in an n-dimensional semantic

space, but as a relative location in an |S|-dimensional space – i.e., relative to all other color

chips in S.

We call the new (comparable) semantic feature spaces obtained in this way perc and xling,

for the L∗a∗b∗ perceptual space and the crosslinguistic elicitation space respectively.6 To give

6Because the perc and xling spaces have the same dimensionality, we can use the two feature spaces
simultaneously by taking the average over the two matrices. In pilot experiments, we found that this combined
space performed as good as (but not better than) the best of the two individual spaces, so we do not report the
results here.
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an impression of the topology of the two spaces, we show in Fig. 4 a 3-dimensional projection

of the color categories for each language in each feature space. The projection is given by a

Multidimensional Scaling (MDS) of the category centroids of the training items in each

language. As we can see, the perc space is more evenly spread out over the geometric space,

whereas the xling space shows a more uneven spread due to particular crosslinguistic

naming tendencies. For example, BROWN, BLACK, PURPLE, and GREY are all close together

in xling space because many languages label many of the chips subsumed under these four

labels with a single term. On the other hand, WHITE and GREY are far apart in the xling

space, despite being perceptually relatively similar (as can be seen in the perc space),

because very few languages label the two with a single term. A key goal of our experiments is

to explore how these different semantic spaces influence the performance of the model.

Training input and the role of term frequency

As noted earlier, it has been proposed that color term frequency plays a role in errors in color

vocabulary acquisition (Yurovsky et al., 2015). Thus, in addition to exploring any differential

effects that arise from the two semantic spaces for encoding color stimuli, we also investigate

the role of term frequency in our model. We do this by varying the sampling of inputs

presented to the model in training. Specifically, we train the model for language l = English

or l = Russian by sampling input items as a pair of a color term t ∈ Tl (basic terms from l)

and a color stimulus s ∈ Sl (encoded by our perc and xling semantic features). The terms

Tl are the basic color terms in each of English and Russian, shown in Table 1. Our stimuli Sl

are the subset of Munsell color chips for which we have adult elicitation data in l – color terms

from multiple informants – to serve as the “ground truth”. For English, |S| = 211 and

|T | = 11 (from Berlin & Kay, 1969); for Russian, |S| = 49 and |T | = 12 (from I. Davies &

Corbett, 1994). (In the case of I. Davies and Corbett 1994, who provide the values in Y xy

color space for their stimuli, we find the Munsell chip closest to each Y xy value in their data.)

We use the distribution P (t, s) = P (s|t)P (t) to sample inputs from T and S. We estimate the

conditional probability distributions for P (s|t) from the adult elicitation data in English
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(Berlin & Kay, 1969) and in Russian (I. Davies & Corbett, 1994). We extract the counts of

each Munsell chip s labeled by a given term t, and obtain P (s|t) by normalizing over all s to

sum to 1 for each t.7

In order to study the effect of color term frequency, we vary how we estimate P (t). As one

estimation, we use the relative term frequency over all basic color terms. For English, these

were taken from the child-directed speech portion of the Manchester corpus (Theakston,

Lieven, Pine, & Rowland, 2001) of CHILDES (MacWhinney, 2000). For Russian, lacking a

corpus of child-directed speech of suitable size, we use the relative term frequencies from the

spontaneous spoken section of the Russian National Corpus.8 We also estimate P (t) using a

uniform distribution, reflecting a learner that is unaffected by color term frequency. By

comparing the corpus-based P (t) to a uniform P (t), we can see which learning and relativity

effects are due to a naturalistic frequency distribution, and which to the structure of the

semantic feature space. The two sampling options are called corpus and uniform. The

relative term frequencies and the uniform P (t) per language are given in Table 1.

Model simulations and parameter settings

As we are interested in how well the two semantic feature spaces and frequency samplings

explain empirical developmental patterns and color discrimination effects, we test the match

of the model performance to human behavior in four conditions, comprising every

combination of features = {perc, xling} and sampling = {corpus,

uniform}. We test these combinations under a number of settings of the free parameters in

7Note that this sampling approach does not address how frequently various color stimuli occur in the world or
in discourse; it simply tells us for some color term the likelihood of various color chips being labeled with that
color term. At this point we know of no way to estimate a sampling of colors people refer to: one might use
estimates of colors ‘in the real world’ (Burton & Moorehead, 1987; Hendley & Hecht, 1949; Howard & Burnidge,
1994), but this does not give us estimates of colors in the child’s world, nor the discourse prominence of these
colors.

8The Russian National Corpus (RNC) is available at http://www.ruscorpora.ru/en/index.html.
Note that the source of the frequency data turns out to have little effect on the results: running our experiments on
frequency data from the two publicly-available Russian CDS corpora on CHILDES (MacWhinney, 2000) or from
adult spontaneous spoken English in the COCA corpus (M. Davies, 2008-) yielded identical significance patterns
for convergence and development experiments, and the same qualitative pattern for the discrimination experiment.
This suggests, foreshadowing our results, that any differences between child-directed and adult language (e.g.,
the terms for BLACK and WHITE in both languages being more frequent in adult language than in child-directed
language) do not change the results as much as using a uniform frequency distribution over terms.
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the model to ensure robust effects given a range of their values.

The free parameter σ (see Eqn. (3) on page 11), and how it changes over the course of

training, dictate the neighborhood radius that determines the “spread” of an input’s influence

on the cells of the SOM. We set σ to a reasonably large value to start (5.0), and then decrease

it gradually (by steps of 0.1) to a minimal value (0.001) based on how well the map cells are

able to match the inputs (i.e., the decrease of σ is modulated by the error signal between input

i and its Best-Matching Unit BMU (i); Li and Zhao 2013). A large initial value for σ and a

small decrease were chosen to avoid all-too-quick convergence in the model, since slower

learning is necessary to study developmental effects.9

The SOM has three other free parameters – a [strength of term features], α [learning rate], and

size [number of rows and columns of the SOM] – for which there is no strong motivation to

set them at a specific value. To assess how robustly the model performs on combinations of

features+sampling, we look at a range of values of the model parameters a, α, and size

for each combination. Specifically, we run 30 simulations for each of the 27 combinations of

a = {0.1, 0.3, 0.5}, α = {0.1, 0.3, 0.5}, and size = {7, 10, 12}, whose combinations were

found to reliably yield a good performance on simulating the adult naming pattern for both

languages (cf. Appendix A).. We report both the average performance of a features +

sampling combination over these 27 free parameter combinations, as well as the range of

performance scores.

Before turning to our main results in the next two sections, we first briefly summarize

simulations of the model undertaken to confirm that it converges to knowledge of color

categories that matches adult color naming; details can be found in Appendix A. Under all

combinations of features + sampling, for both languages, the model achieves mean

accuracies of 94%–97% for its most probable term matching the modal adult color name

response. There are only very small (1%–2%) differences in performance between the

9A reviewer raised the question whether the setting of σ and the learning rate α interact, which we agree is
a possibility, but does not seem to be an issue here. The high initial value of σ was chosen to allow the map to
be very elastic initially, and become more fixed as its mapping error decreases. Pilot experiments revealed that
setting initial σ much lower prevented the model from displaying substantial overextension patterns. Given this
high value, none of the settings of α significantly affected the model’s ability to simulate the developmental pattern
(as presented in the section on development).
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semantic feature spaces and the input sampling methods, attesting that: (a) both perc and

xling are adequate as the basis of a semantic representation for learning color word

associations; and (b) given sufficient input, the model learns these associations under either

corpus or uniform term sampling. Because the model stops showing improvements in its

fit to adult color naming after 25K inputs, we use 30K inputs as representing the “adult” state

of the model in our discrimination experiments. Figure 5 gives two visualizations of trained

Self-Organizing Maps, one for English and one for Russian. We can see that most colors cover

a single contiguous region on the map and that similar colors are located adjacently on the

map, indicating that the SOM indeed captures the topology of the training data on its

two-dimensional grid.

Model Results: Acquisition and Developmental Errors

The first question we explore with our computational model, posed in the Introduction, is:

What drives the difference in ease of acquisition of various lexical semantic categories? We

explore the color naming behavior of our model over the time course of learning, and compare

it to the developmental error patterns in children. In particular, we explore the possible

semantic and frequency factors that influence the overextension of one color term for another,

by considering the operation of our model under different settings of

features+sampling.

Empirical data on developmental errors

We use our model to simulate the color term acquisition patterns in two developmental color

naming studies (in English and in Russian), for which detailed over- and underextension data

was available.

We take our English data from Bateman (1915), who presents a cross-sectional experiment on

591 English-speaking children in five age groups (151 6-year-olds, 160 7-year-olds, 179

8-year-olds, 72 9-year-olds, and 29 10- and 11-year-olds). Each child was presented with eight

color chips corresponding to eight of the eleven basic color terms of English (cf. Table 1) –
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specifically, representing the eight color categories BLACK, WHITE, RED, BLUE, YELLOW,

GREEN, PURPLE, and ORANGE. (Three other color categories are associated with basic color

terms in English: BROWN, GREY, and PINK.) For six out of the eight colors, few or no

overextension errors were found by Bateman, whereas for PURPLE and ORANGE, children

more frequently responded with an incorrect term. Fig. 6 gives the probability of the response

terms given these two color chips (i.e., the proportion of children in an age bin labeling a chip

with each of the indicated terms). As we can see, the error pattern for ORANGE is somewhat

haphazard, but there is a clear underextension of the term orange. For PURPLE, it was found

that blue is the primary term being overextended to this chip. From Bateman (1915), we have

access to the counts of all color term responses to each of the eight color stimuli he uses,

across each of the five age groups.

I. Davies et al. (1998) carried out a similar cross-sectional experiment in Russian: 200

Russian-speaking children (80 3-year-olds, 80 4-year-olds, and 40 5-year-olds) were each

presented with 12 color chips, one for each of the 12 basic color terms in Russian (see

Table 1). The color chips were selected to be good examples of color categories that occur

widely across languages, with the exception of DARK BLUE and LIGHT BLUE, for which

Russian has two basic color terms (sinij and goluboj, respectively). In these cases, the chips

that were thought to be good representations of these two Russian color categories were used.

We extract data for our study from I. Davies et al. (1998), who report only the proportion of

children giving the dominant term, as well as the most-frequent error per chip per age group;

see Fig. 7 for some examples.10 Notable overextensions were found in the blue-purple range

(Figure 7, top row), with sinij ‘dark blue’ being used for the LIGHT BLUE and PURPLE chips

at 3 years old more than the correct terms (goluboj ‘light blue’ and fioletovyj ‘purple’,

respectively). The term goluboj was also overextended to DARK BLUE, but to a lesser extent

than sinij to LIGHT BLUE. Several other chips displayed significant overextension patterns

(Figure 7, bottom row): PINK, ORANGE, and BROWN. For the remaining chips (WHITE,

BLACK, GREEN, RED, YELLOW, and GREY) few overextension errors were found.

10The bars in Fig. 7 do not add up to 1 because the remaining probability mass is assigned to other terms and/or
failures to respond.
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Evaluating development in the model

Our goal is to see how well the model’s term responses to test stimuli mimic the above

patterns of child color term responses. We do so by looking at the probability P (t|s) (as

calculated using Eqn. (4), page 12) for all basic terms t in response to a test stimulus s.

The test stimuli for evaluating development were chosen to reflect as closely as possible the

descriptions of color chips shown to children by Bateman (1915) for English and by I. Davies

et al. (1998) for Russian. Bateman only verbally describes his 8 test stimuli as being good

exemplars of the 8 color categories he studies. For our model test stimuli, we took the

(multiple) Munsell chips identified by Berlin and Kay (1969) as the central members of each

of those 8 English color categories. To test the model on a particular color category, we found

the predicted P (t|s) for each of the chips in the corresponding set, and took the average over

them as the model prediction for that category. (For example, if five chips s1, . . . , s5 were

identified as central members of BLUE, we averaged the P (t|s) values for each of s1, . . . , s5 to

give values of P (t|s) for the hypothetical BLUE chip used by Bateman.) I. Davies et al. (1998)

report the values of their 12 test stimuli in the Y xy color space; we convert each into L∗a∗b∗

values, and then identify the closest Munsell chip as the corresponding test stimulus s for

which we extract P (t|s). Thus, Stest in each language consists of the semantic features s for 8

sets of Munsell chips (English) and 12 Munsell chips (Russian).

We now need to compare the model’s output of P (t|s) on all test stimuli in Stest to the patterns

of child responses in the human data. Directly comparing the numerical distributions can

mask important ordering differences (e.g., one distribution P (·|s) might be numerically closer

to the child distribution of responses, but get wrong a critical ordering of one term favored

over another). To ensure that we assess the quality of ordering of the model responses, we

compare the rankings of term–stimulus pairs in the behavioral data and in the model. The

ranking in the behavioral data is given by the number of children giving a particular color term

t in response to a color stimulus s. The model ranking is given by taking all term–stimulus

(t, s) pairs for our test stimuli and ranking them according to their P (t|s) values, from high to

low. We compare these two rankings using the non-parametric test Kendall τb.
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Next we must consider at which point in training to perform this assessment of the model’s

responses. We cannot know a priori how to map the children’s ages from the color naming

studies onto corresponding amounts of model training. Rather than arbitrarily picking a time

point, we search for an alignment of the children’s term rankings in the different age groups to

the rankings of the model in various consecutive bins of model time. Specifically, we test

various sizes of consecutive sequences of input data, beginning at various times, and find the

alignment of ages to test points in the model that maximizes the fit of the model rankings to

the empirical data. By ensuring, for every simulation, that we have found the best fit of the

model to the human data, we know that we are fairly comparing the optimally fitting results

for all conditions (features = {perc, xling} and sampling = {corpus,

uniform}) under each parameter setting.

More precisely, given A age groups in the data (A = 5 for English and A = 3 for Russian), we

need to find A consecutive bins of test data in the model whose rankings best fit the child

rankings. The best alignment to a series of bins is given by the alignment for which the τb

between the ranking for each age group and the ranking of the corresponding series of test

points is highest. The development score scoreD is then defined as the τb for the best

alignment, averaged over the A age groups.11

The difference between the features and sampling settings are evaluated with a

two-way ANOVA with the scoreD as the dependent variable, and features and

sampling as independent variables. All significant differences are reported and all reported

differences are significant, to p ≤ .001.

While we know of no reasonable “baseline” performance to compare our results to, we can

consider what an error-free system would do – i.e., a model always predicting the correct term

with a probability of 1. Since the goal of the developmental evaluation is to consider whether

the model is making errors that match those of children at different ages, it is interesting to see

how well a system making no errors would match children’s behavior.

11Designing a transparent evaluation procedure for (partially incomplete) developmental naming data is both
important and very difficult. Several methods we tried masked some of the patterns we were interested in. The
current procedure, while lacking an assessment of precise quantitative fit, was adopted because it allows a direct
inspection of the critical ordinal patterns in the data.
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Results on development

Considering the results for English in Table 2 (left side), we find that (although significant) the

differences between the feature spaces and between the sampling procedures are relatively

small (a difference of 5% between the best and worst combinations of features +

sampling). Moreover, under no combination of features + sampling does the

aggregated mean scoreD of the model surpass the error-free learner. This is primarily due to

two things. First, there are generally few child errors to predict for English, making the

error-free learner a strong baseline to surpass. Second, the errors that do occur in the child

data are rather haphazard: with the exception of blue for PURPLE (see Fig. 6b), no other color

stimulus has an error response that is dominant over other error responses (cf. ORANGE in

Fig. 6a). A scoreD that surpasses the error-free learner would require the model to predict the

presence of haphazard overextensions, while also predicting the absence of non-attested

overextensions.

On the other hand, we do find indicators of a difference between the feature spaces and

between the sampling methods on the English data. First, xling has a significantly higher

scoreD than perc, and corpus has a significantly higher scoreD than uniform. Second,

considering all the simulations for each features + sampling setting, we find that many

more xling + corpus simulations surpass the error-free learner than simulations using

other model settings. Specifically, whereas 21% of the xling + corpus simulations scored

higher than the error free learner, only 10% or fewer of the other combinations did so (10% of

perc + uniform, 9% of perc + corpus, and 3% of xling + uniform).

Turning to Russian, recall that the observed errors in children are much more prominent and

consistent than in English (see Fig. 7). Importantly, in our model results on Russian (Table 2,

right side), we find that all mean scoreD values for all four combinations of settings surpass

the error-free learner. Moreover, the results across the features + sampling settings

show a similar pattern as in English, but more pronounced: the magnitude of the difference

between the best (xling + corpus) and worst (perc + uniform) combinations is much

greater than in English (here 14%), and there are consistent and stronger differences between
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both features and sampling, with xling performing better than perc by 4–7%, and

corpus performing better than uniform by 7–10%.

Analysis of Developmental Results

In a by-item analysis of model output in both languages, we find that most differences in

performance between the features + sampling settings were found for color categories

that display systematic overextension in children, e.g., the use of blue for PURPLE in English,

and the use of sinij (‘dark blue’) for PURPLE and for LIGHT BLUE in Russian. In other words,

the locus of the better performance of the xling + corpus combination is its ability to

capture the asymmetric error patterns of interest.

In order to understand why this difference in performance arises, we identified two factors that

underlie the model’s pattern of errors. The most important factor is the confusability of color

categories: If two categories are close together in a feature space, it is more likely that a

stimulus belonging to one of those categories could be misclassified as the other (as for

instance Bartlett 1978 has argued for color terms in perceptual space). Semantic confusability

explains the difference in performance between the perc and xling feature spaces. (See

Fig. 4 on page 52 for the positioning of the color categories of each language in each semantic

space.) For English, the BLUE and PURPLE test items are closer together – more confusable –

in xling than in perc. Similarly for Russian, the DARK BLUE and LIGHT BLUE test items

are closer together in xling than in perc. Moreover, the xling space displays less

confusability than the perc space between pairs of categories for which we find no

overextension errors. For example, in Russian the model trained on the perc space predicts

an (unattested) pattern of overextensions of rozovyj (‘pink’) to PURPLE as well as fioletovyj

(‘purple’) to PINK, because the PURPLE and PINK categories are relatively close to each other

in the perc space. This pattern of mutual overextensions is absent for the model trained on

the xling space, in which the two colors are further apart and hence much less confusable.

Semantic confusability alone can lead to “mutual overextensions” – e.g., sinij (‘dark blue’)

being used for some LIGHT BLUE stimuli, and goluboj (‘light blue’) being used for some
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DARK BLUE stimuli (see Fig. 7a and Fig. 7b). However, children notably make asymmetric

overextensions – as the figures show, sinij is overextended more to LIGHT BLUE than goluboj

is to DARK BLUE. Moreover, there are cases where there is little or no “mutual” overextension

– e.g., sinij is common for PURPLE but not fioletovyj for DARK BLUE (see Fig. 7c). Similarly

the overextension of blue to PURPLE in English is asymmetric. These asymmetries are where

the second factor – that of frequency – comes in (cf. Yurovsky et al. 2015): i.e., relative

frequency of terms can induce a directionality over potential overextensions that arise from

semantic confusability. For example, the higher frequency of sinij (‘dark blue’) over fioletovyj

(‘purple’) can mean that when the DARK BLUE and PURPLE regions are confused in the

feature space, the term sinij (‘dark blue’) is overextended, but not the term fioletovyj (‘purple’).

This frequency factor plays out in our model as follows. Under sampling = corpus, the

model initially does not assign a stable location on the map for stimuli associated with

infrequent terms: that is, there is an initial asymmetry of representational strength between

frequent and infrequent terms. Only when a fuller range of stimuli has been seen does the

learner carve out a set of cells on the map for the infrequent terms. For example, in English,

when the model encounters far fewer examples of PURPLE than BLUE, this leads to the

representational asymmetry just described. Combining this asymmetry with the fact that the

categories BLUE and PURPLE are very similar to each other and hence confusable, we find that

the model overextends blue to PURPLE, but not purple to BLUE. Frequency can also block

overextensions from happening. For example, in Russian, the (unattested) overextension of

rozovyj (‘pink’) to RED under uniform sampling is mitigated using corpus sampling: the

frequency of krasnyj (‘red’) is much greater than that of rozovyj, hence RED has a stronger

initial representation than PINK. Because of this, in both feature spaces when using corpus

sampling, the model predicts an overextension of krasnyj to PINK, but not rozovyj to RED.

Since such representational asymmetry does not arise when sampling from a uniform

distribution over terms, sampling = uniform fails to capture either the asymmetric

overextension effects or their blocking.

Taken together, these results indicate that the xling feature space captures between-category
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confusability better than the perc space, and that frequencies under corpus sampling

appropriately drive the asymmetry of the resulting overextensions (while uniform cannot).

Thus our model points to two interacting factors as the source of asymmetric overextensions

in children – one involving the semantic representation of the color categories, and one

involving the frequency of the terms used to refer to them.

Model Results: Discrimination Task/Linguistic Relativity

The second question we explore with our computational model, posed in the Introduction, is:

How does acquiring a lexical semantic system of categories influence cognitive processing in

that domain? We examine the effect that having a category boundary in the color space

facilitates the discrimination of stimuli that are located across the category boundary from

each other. As in development, we explore the mechanisms that lead to the observed behavior,

and whether and how the semantic space and input sampling influence the results in our

model.

Empirical data on color discrimination

As noted above, Russian has two basic color terms in the region covered by English blue: sinij

‘dark blue’ and goluboj ‘light blue’. Winawer et al. (2007) ask whether this situation affects

behavior in color discrimination: The expectation is that if linguistic relativity holds, the

linguistic distinction between two stimuli (sinij for DARK BLUE and goluboj for LIGHT BLUE)

would help a Russian speaker to discriminate between the corresponding color stimuli in a

non-linguistic task (compared to an English speaker, for whom they are both blue). Winawer

et al. (2007) presented adult monolingual speakers of Russian and English with triplets of a

stimulus color chip, an identical target chip, and a different distracter; Fig. 8 shows examples

of such stimulus-target-distracter triplets. Participants were asked to decide which of the target

or distracter was identical to the stimulus, and response latency was measured. On each trial,

the distracter was either perceptually more similar (‘near’) or less so (‘far’) from the stimulus

chip (according to a color appearance model). Critically, the distracter was also either ‘within’
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the same category of DARK BLUE or LIGHT BLUE as the stimulus, or ‘across’ the category

boundary, based on a separate per-participant labeling task. Note that Russian speakers

labeled the stimuli with their basic color terms of sinij and goluboj, while English speakers,

lacking this basic category distinction, used the multi-word terms of dark blue and light blue.

First considering the ‘near’ vs. ‘far’ cases, participants in both languages were slower at

picking the target chip when it was ‘near’ the distracter compared to when it was ‘far.’ This

confirms that color discrimination in this task is more difficult when stimuli are perceptually

more similar, for both English and Russian speakers.

Now turning to the critical ‘across’- vs. ‘within’-category cases, differences arose between the

English and Russian speakers. For English speakers, there was no difference in response

latency to ‘across’ vs. ‘within’ cases, whether overall or separated into the ‘near’ and ‘far’

stimuli. Although English speakers labeled the stimuli differently as light blue and dark blue,

this difference does not affect their speed in non-linguistic color discrimination. By contrast,

Russian speakers picked the target faster when it was located ‘across’ their basic category

boundary from the distracter compared to when it was ‘within’ the same category. That is, a

target-distractor pair labelled by different basic color terms was easier to discriminate than a

target-distractor pair where each was labelled by the same basic term. When broken down by

‘near’ and ‘far’ stimuli (holding the stimulus distance constant), it was found that this effect

held only in the ‘near’ cases. Intuitively, this indicates that Russian speakers treated ‘across’

target-distracter pairs as more distinctive than ‘within’ pairs – even though they were both

equally close perceptually – showing an influence of their linguistic categorization using the

basic terms sinij and goluboj. Interestingly, this effect could be isolated to the perceptually

‘near’ cases, suggesting that linguistic categorization only plays this facilitatory role in harder

tasks.12

12Winawer et al. (2007) tested participants under three conditions: with a verbal interference task, with a
spatial interference task, and with no secondary task. We report in the text the results of the no interference
condition, since our model cannot simulate the secondary tasks of the other conditions. The results for English
speakers was the same across all three conditions. For Russian speakers, the results when performing the spatial
interference task were the same as in the no-interference condition, but when performing a verbal secondary task
their linguistic category advantage was eliminated. Taken together, this patterns shows that the observed effect in
the no-interference condition is a linguistic influence on non-linguistic color discrimination.
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For our simulations of color discrimination, we adapt the stimuli from the experiment of

Winawer et al. (2007), and compare our model trained on English vs. Russian in terms of

discriminability of those stimuli, assessing performance on perceptually ‘near’ vs. ‘far’ and

‘across’- vs. ‘within’-category pairs.

Evaluating discrimination in the model

As noted earlier, we can mimic the human color discrimination task in our model by

determining the distance between colors in the model’s learned representation, reflecting the

fact that greater distance between two stimuli leads to easier discriminability by humans.

Specifically, we take the state of the model after having processed 30, 000 input items to

correspond to adult organization of the color terms, and we take the distance between a pair of

stimuli in the learned map of the model to correspond to the perceived difference between

them, and correspondingly the degree of ease or difficulty in discriminating them. This

operationalization follows naturally from the nature of learning in the SOM, as its acquired

representation attempts to be a faithful projection of our semantic and term features onto a

2-dimensional grid. Although map distance cannot be directly interpreted as reaction time, we

can evaluate the various feature settings by their qualitative fit to the observed behavioral

pattern.

We convert the 20 stimuli from the color discrimination task of Winawer et al. (2007) into our

representation of color semantic features as follows. Consider the perc feature space; the

procedure is identical for the xling space. We first take the stimuli at each end of the scale in

the Winawer et al. data set (i.e., the darkest and lightest blue), find the nearest Munsell chip

for each, and encode them in the perc feature space. Call these stimuli s1 and s20. For the

remaining 18 stimuli between these, we linearly interpolate the values of s1 and s20 in the

perc feature space. This procedure yields a vector Sdisc = [s1, ..., s20] of color stimuli, where

all distances between stimuli si and si+1, for 1 ≤ i < 20, are equal. Following Winawer et al.,

we consider two stimuli si and sj to be ‘near’ if j = i+ 2, and ‘far’ if j = i+ 4.

In order to decide if pairs of a target and a distracter are in the same category (i.e., both DARK
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BLUE or both LIGHT BLUE), Winawer et al. (2007) established per-participant category

boundaries by asking each participant, following the discrimination experiment, to label the

twenty stimulus color chips as sinij (‘dark blue’) or goluboj (‘light blue’) for Russian, and

dark blue or light blue for English. For a Russian-trained model, we can analogously retrieve

the best term label ts for each of the stimuli in Sdisc (using Eqn. (5) on page 12), but we cannot

do this for an English-trained model, since it is not provided different terms for the two blues.

According to Winawer et al., the observed category boundaries for Russian and English hardly

differ, and so we use as the English boundary the mean location of the Russian category

boundary under the same combination of model settings. A target-distracter pair (st, sd) is

now considered ‘within’-category if st and sd are on the same side of the category boundary

we set, and ‘across’-category if on opposite sides.

We can now find the model’s perception of the distance between any two of these stimuli si

and sj as the Euclidean map distance dmap in the SOM between their Best-Matching Units –

i.e., dmap(BMU (si),BMU (sj)). The greater the distance in its map, the easier for the model to

discriminate the target from the distracter (corresponding to faster discrimination in the human

data). Importantly, we adopted this operationalization of discrimination because it directly

draws on the learned representation in the map. (The use of Euclidean distance was motivated

by the fact that this metric is used elsewhere in the SOM, cf. Eqn. (3).) Analogously to

Winawer et al., the map distances for the 8 ‘near’ and 8 ‘far’ (st, sd) pairs closest to the

category boundary were calculated from the model for each simulation. We take the mean

dmap(st, sd) value in each of the 4 conditions (‘within’–‘across’ × ‘near’–‘far’) given a

particular combination of model settings, for all simulations that are valid (see below).

We compare the different conditions of the experiment – ‘far’ vs. ‘near’, ‘across’ vs. ‘within’

– using a log-transformed ratio between the two (mean) distances (i.e., the average over the

simulations using all model parameter settings). For example, the ‘far’-‘near’ ratio is defined

as the ratio between the mean dmap for ‘far’ pairs and the mean dmap for ‘near’ pairs. We use

the log2 ratio, as this is easier to interpret: e.g., a log ratio of 0 for ‘far’-‘near’ means that there

is no difference between ‘far’ and ‘near’ distances; values above 0 mean that the ‘far’
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distances are greater, whereas values below 0 mean that the ‘near’ distances are greater.

Results on discrimination

Before turning to the numeric results, we note that we found a substantial difference between

the semantic feature spaces in the number of valid simulations that we could use in this

analysis. Specifically, a total of 15% of the simulations in Russian did not have the category

structure over the test stimuli required to simulate the Winawer et al. (2007) experiment.13 We

had to omit such invalid simulations from our analysis. Importantly, more than twice as many

perc simulations were invalid as xling simulations (21% of perc vs. 9% of xling). This

shows a clear advantage of the xling semantic space, with which the model more often

learns a category space with the expected properties. On the other hand, we found no

differences in validity of simulations, nor even in the match to the behaviorial data, when

using the two input sampling procedures in the model. Thus we pool the corpus and

uniform settings for each semantic feature space in our reported results.

We describe here how we simulate each of the three main findings of the Winawer et al.

(2007) experiment with reference to the log ratios from the valid model simulations. These log

ratios are shown in Fig. 9, split out over feature space and language.

First, Winawer et al. (2007) find that ‘far’ pairs of stimuli are easier to discriminate than ‘near’

pairs in both languages; that is, people are faster at discriminating stimuli that are perceptually

more distant. To achieve this effect in our model, we expect the map distances, dmap, for the

‘far’ pairs to be greater than the distances for the ‘near’ pairs in both languages – that is, the

ratio of ‘far’ to ‘near’ should be distinctly higher than 0. Looking at Fig. 9a, we find that the

far:near ratio is well above 0 under all circumstances – for both perc and xling, and for

English and Russian. Because we use log2 ratios, the mean log ratio values of around 1 mean

that ‘far’ pairs are about 2 times as far from each other on the map as ‘near’ pairs. Because

‘far’ stimuli pairs are, by design, about twice as far as ‘near’ stimuli pairs in both feature

spaces, this confirms that the model captures the distance in the underlying semantic spaces

13That is, in these simulations it was not possible to identify a single category boundary between sinij [‘dark
blue’] and goluboj [‘light blue’] within the list of test stimuli; rather, there were two or more category switches.
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appropriately.

Second, Winawer et al. (2007) find that ‘across’ pairs are easier to discriminate than ‘within’

pairs in Russian, but not English. This is the main finding in their paper, which is attributed to

the existence of a basic category boundary in Russian but not in English. To model this, we

expect the log ratio of dmap values for the ‘across’ pairs of stimuli to ‘within’ pairs of stimuli to

be substantially higher than 0 in Russian (indicating faster discrimination) but not in English.

Fig. 9b shows that the across:within ratio for Russian in the model is greater than 0, whereas

the ratio is much closer to 0 for English. 14

Finally, Winawer et al. (2007) note that the above cross-category advantage for Russian holds

for ‘near’ pairs but not for ‘far’ pairs. That is, the greater ease of discrimination when there is

a category boundary between stimuli only holds for the harder (‘near’) discrimination tasks. In

our model, we expect the across:within ratios of the ‘near’ stimuli to be higher than 0 in

Russian, but not those of the ‘far’ stimuli. As with the across:within ratio overall in English,

we expect there that neither ‘near’ nor ‘far’ pairs will show a ratio higher than 0. Figures 9c

and 9d illustrate that the model captures this effect to some extent. On the one hand for both

the ‘near’ and ‘far’ pairs, the across:within log ratio is greater than 0, which is contrary to the

prediction for the ‘far’ pairs. On the other hand, the Russian across:within log ratios are

higher for the ‘near’ pairs than for the ‘far’ pairs, showing that for the ‘near’ pairs (but less so

the ‘far’ pairs) the model discriminates the ‘across’ pairs more readily than the ‘within’ pairs.

For both ‘near’ and ‘far’ pairs in English, the ratios are close to 0, indicating no difference.

Analysis of Discrimination Results

We find that the model is able to simulate the language-specific effects found in Winawer et al.

(2007). We found no difference between the sampling options, indicating that while

14A reviewer raised the question to what extent the size parameter influences the dmap values. The across:within
ratio for Russian is the only place where we find such an effect: the ratio is on average greater for maps of
size = 7 than for maps of size = 10, which are in turn greater than maps of size = 12. This reflects the fact that
same-category stimuli are more often projected onto the same Best-Matching Unit in smaller maps than in larger
ones, thus making the ratio on average greater. However, this quantitative difference did not change the qualitative
pattern under any of the settings of size: in all cases the log-across:within ratio for Russian was significantly
greater than both 0 and the English log-across:within ratio.
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corpus sampling leads to a better developmental match, once the model sees enough input to

converge on adult knowledge, the structure of this knowledge is not affected in a relevant way

by how frequently the stimuli occurred in learning. We also found that for the features

settings, both semantic spaces showed the crucial differences between Russian and English.

The model displays the critical effect of this experiment because in learning, the semantic and

term features are jointly projected onto the underlying map representation. This enables the

model to display language-specific topologies: the area of the map representing a particular

portion of the semantic feature space (here, DARK BLUE and LIGHT BLUE) will differ between

two languages according to how the terms carve up the underlying space into lexical

categories (here, sinij and goluboj vs. blue). Our earlier Fig. 5 illustrates this: here we can see

that the twenty test stimuli are spread out over fewer cells in English (n = 2) than in Russian

(n = 3), and the map distances across DARK BLUE and LIGHT BLUE are thus larger in Russian

than in English. The ability of the xling space to capture this effect, together with its better

match (over perc) to child developmental patterns, support the use of a crosslinguistic

semantic space for modeling both language acquisition and linguistic relativity data.

Discussion

Our proposed computational model simulates both developmental errors in learning the

vocabulary of a semantic domain, and differential effects across languages in the use of such

learned semantic knowledge. To our knowledge, this is the first unified model of both child

acquisitional patterns and adult linguistic relativity effects in an actual semantic domain (cf.

Colunga & Gasser, 1998). Using the domain of color as a testbed, we explore various factors

that may influence the observed human behavior: properties of the semantic representational

space, the frequency of terms in the input, and the mechanisms by which these interact. In

particular, we consider these factors in exploring the following questions with our model: (1)

why some linguistic categories – i.e., the associations between a term and a portion of the

semantic space – are harder to learn than others, and (2) how learning a language-specific set

of lexical categories affects processing in that semantic domain.
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In investigating the first question, we focus on children’s asymmetric overextension errors –

e.g., use of the term blue for both BLUE and PURPLE, but not (or less) use of the term purple

for BLUE. Such errors are revealing about the developing semantic category structure. Our

model learns color categories and their name distributions by jointly projecting associated

color-term+color-stimulus pairs onto the cells of a neural network (called a Self-Organizing

Map Kohonen et al., 2001). Examination of the model’s developmental trajectory reveals two

factors at play in asymmetric overextension errors: semantic confusability and term frequency.

When the color stimuli for two color terms are close in the semantic representational space,

they are projected onto close areas of the model’s representational map. When terms are

sampled uniformly, these two (adjacent or overlapping) areas are similar in strength of

representation, leading to interchangeability of the two terms. For asymmetric overextension

to occur, one term must be dominant in frequency, enabling it early on to be more strongly

represented in the map; only later, given sufficient input, will the less frequent term carve out

its own robust representation. Consequently, when color terms are input in proportion to their

corpus frequencies (rather than uniformly), our model shows a better match to observed

overextension patterns in children. Our model thus provides a mechanistic explanation for the

interplay between semantic closeness of the learned categories (e.g., Bartlett, 1978; Pitchford

& Mullen, 2003) and term frequency (Yurovsky et al., 2015) in developmental error patterns

for color terms.

The second question we explore concerns linguistic relativity – how the learned lexical

categories in a domain may influence semantic processing in that domain. Here we consider

evidence that having a lexical boundary between two parts of the color space (e.g., two basic

color terms, sinij for DARK BLUE and goluboj for LIGHT BLUE, in Russian) affects the speed

of processing stimuli across that boundary compared to a language which does not have the

boundary (e.g., a single basic term blue for both DARK BLUE and LIGHT BLUE in English).

We find in our model that the joint projection of a color-term and color-stimulus together onto

the distributed map representation enables the language-specific lexical categories to ‘warp’

the semantic space. That is, the same portion of the semantic space of stimuli (in this example,
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the BLUE portion including DARK BLUE and LIGHT BLUE) will be allocated differently onto

the map representation in the model, depending on the need (or not) to make a basic color

distinction within that space. Our model then explains linguistic relativity effects (at least,

category effects typical of color processing; e.g., Cibelli et al. 2016; Winawer et al. 2007) as

arising from an acquisition mechanism that yields language-specific topologies for the same

semantic domain.

A clear next step for this research would be to bring these two aspects of investigation closer

together, by exploring the developmental trajectory of linguistic relativity effects. A

well-known body of work involves children’s acquisition of the tight-fit/loose-fit distinction in

Korean, and the comparisons of sensitivity to this semantic property across Korean- and

English-speaking children (Bowerman & Choi, 2001; McDonough et al., 2003). Modeling

such data in our approach would shed further light on the acquisitional mechanisms and

resultant knowledge structures discussed above, and their developmental time-course.

However, while the model here has the virtue of using a simple architecture that enables

identification of general mechanistic underpinnings of its behavior, it is limited to learning

words from individual presentations. By contrast, studying the acquisition of relational

knowledge, such as that expressed by verbs and adpositions (Gentner & Bowerman, 2009;

Majid, Boster, & Bowerman, 2008; McDonough et al., 2003; Saji et al., 2011), will be better

situated within a model of word-learning in context. Our plan is to extend our work on

cross-situational word learning (e.g., Beekhuizen, Fazly, Nematzadeh, & Stevenson, 2013;

Nematzadeh, Beekhuizen, Huang, & Stevenson, 2017) to explore the acquisition of relational

semantic domains and associated linguistic relativity behavior.

Consideration of a range of semantic domains also raises the issue of having an appropriate

semantic representational space. Indeed, one of our goals in pursuing the present work was to

further explore the possibility of deriving an effective distributional semantics from

crosslinguistic elicitation data, as we had proposed for the domain of spatial relations

(Beekhuizen et al., 2014). In line with Anderson (1982) and the Typological Prevalence

Hypothesis of Gentner and Bowerman (2009), our approach assumes that crosslinguistic
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agreement in naming semantic situations can reveal the similarity structure among those

situations in an underlying semantic space. Intuitively, for example, the more languages there

are that label two color chips with the same color term, the more similar those chips are

assumed to be, and the closer they are located in the derived vector-based space. An advantage

of this approach is that crosslinguistic data may be available for a domain in which an accurate

and well-motivated semantic space is otherwise difficult or not currently possible to elaborate

(cf. our work on indefinite pronouns, Beekhuizen et al. 2017).

A further advantage of exploring this approach in the domain of color is that there is also a

well-accepted perceptual space for encoding color (L∗a∗b∗, Fairchild 1998), which enables us

for the first time to directly compare an existing, well-understood semantic representation

(which we encode here as perc), with our crosslinguistic approach (here called xling). We

find in our model simulations that xling performs better than perc in accounting for

developmental errors, because it better captures the observed semantic confusion between

colors. For example, Russian children overextend sinij [‘dark blue’] to goluboj [‘light blue’]

more than might be expected by the perceptual discriminability of the two captured in perc,

but DARK BLUE and LIGHT BLUE are much closer together in xling. On the other hand, for

the linguistic relativity simulations, we find that the model trained using either perc or

xling achieves the observed effects. These results together support the idea that our

crosslinguistic approach to encoding a semantic space may provide a practical and principled

alternative when an existing semantics is not otherwise available, and in fact, may capture

cognitive influences – which have shaped the world’s languages – that other approaches do

not.

A deeper question remains regarding the crosslinguistic space, namely why some pairs of

color chips are categorized with the same term within many languages, whereas others, with

the same perceptual distance between the pair, are not. Apparently, factors other than our

biologically-grounded system of color perception – such as correlations of (properties of)

objects with particular perceptual values in the color space – are relevant to subjects’ naming

of color chips (Mitterer, Horschig, Müsseler, & Majid, 2009; Saunders & Van Brakel, 1997;
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Wierzbicka, 2005). Our method does not directly address the question of what factors

determine the underlying similarity space revealed by crosslinguistic elicitation data, let alone

whether these factors are biological, social, or ecological. Crucially, however, by letting

languages ‘speak for themselves’, our method is agnostic with respect to the sources and

allows for the derivation of a semantic similarity space without any commitment to a set of

underlying features. On the other hand, this approach could be deployed as a discovery

procedure for previously unseen dimensions of variation (cf. Majid et al., 2008), and thus has

the potential to contribute to the question of the ultimate causes of the similarity space.
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Appendix A

Model Convergence

We evaluated whether the model is able to obtain an adult level of understanding of the color

terms. In prior experimentation, we determined that the model, under any combination of

parameter settings, stopped improving in its color term categorization at the latest after around

25, 000 input items. Because of this, we decided to consider 30, 000 iterations to be the ‘adult’

state of the model. After having trained the model on 30, 000 input items in a given language,

we test its color naming behavior for the complete set of training color chips S. To mimic

color naming in adults, we extract the most probable term ts produced by the model for each

of the color stimuli s ∈ S, using Eqn. (5) (repeated here as Eqn. ()):

ts = argmax
t∈T

P (t|s).

We then compare these responses to the adult judgments for these stimuli, and assess the

degree of model convergence with adult linguistic behavior using scoreC:

scoreC = |Scorrect|
|S|

,

where Scorrect is the subset of all stimuli, S, for which ts = tcorrect, and tcorrect is the modal adult

response for the given chip. Differences between conditions of interest (features and

sampling) are evaluated using a two-way ANOVA with the scoreC as the dependent

variable, and features and sampling as independent variables. All significant

differences are reported and all reported differences are significant to p = .001 or less.

Table 3 shows the average convergence scores per language for the four combinations of

features = {perc, xling} and sampling = {corpus, uniform}. Under all

conditions, the model’s predictions match those of adults in > 90% of the cases,

outperforming the naive baseline of always guessing the most frequent term (scoreC = .20

for English and .22 for Russian). Despite all conditions doing well, we found small but
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significant differences between the settings: the scoreC values were higher for perc than for

xling, and higher for uniform than for corpus. We failed to find a source of these

differences in the error patterns: under all conditions, the model made the same types of

errors, just in slightly different quantities. This, combined with the fact that the differences

between conditions are rather small (.02 for both English and Russian), leads us to believe that

the variation does not reflect interesting properties of the feature spaces or sampling effects.

Because we are testing on the same chips as used in training, it could be suggested that this is

not a fair method for assessing learning in the model. Indeed, normal practice is to train on

one set of data and test on an unseen set. However, several factors led us to test convergence

with adult behavior in this way. First, we assume that generally adults are not being asked to

label “unseen” colors in a color naming task; rather they are seeing colors they have likely

been exposed to with various labels and generating which they think is the best label for that

color. Second, our model is not simply memorizing the association of color chips to their

dominant labels – it is unable to. Because every input to the model affects the representation

of more than one cell in the map, the model cannot directly store exemplars, as in some

learning models. Finally, because of the small size of the Russian data set (49 stimuli),

holding out stimuli during training make the categorization problem unrealistically difficult, as

some color categories have only a few example stimuli labelled with that color term. Hence,

we believe the reported set up is a reasonable approach for simulating adult color naming

experiments given the available data.

Nonetheless, to assess the ability of our model to generalize to unseen data despite the small

data sets, we ran the simulations again in a leave-one-out cross-validation procedure. For each

stimulus si ∈ S, the model was trained on input items sampled from the set of all stimuli

except si (i.e., trained on S \ si). In particular, we trained the model for each of the four

combinations of features and sampling, with one set of model parameters that we found

to perform particularly well on the experiment with non-held-out data (α = .5, a = .5, and

size = 12). For each left-out stimulus si, we ran five simulations. We do not report the full

results of all these follow-up experiments here, but simply summarize. Crucially, we found
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that for English, the model reached convergence scores of ≥ .90 under any combination of

feature set and sampling method. For Russian, however, the scores dropped to around .70

(with a reversal of the pattern of better performing feature sets, and a larger difference:

xling scored on average .73, versus .69 for perc). We believe the lower performance in

Russian is due to the data scarcity: many of the color categories are only represented by 3 or 4

exemplars, which makes the acquisition of a generalizable color category more tentative.
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Table 1
Basic color terms for English and Russian with corpus frequencies

English Russian
color abbre- relative color abbre- relative
term viation frequency term viation gloss frequency

red re .20 belyj bel ‘white’ .22
blue bu .19 chernyj che ‘black’ .22
green gn .16 krasnyj kra ‘red’ .20
yellow ye .13 zelenyj zel ‘green’ .09
white wh .09 sinij sin ‘dark blue’ .06
orange or .07 goluboj gol ‘light blue’ .05
pink pi .05 seryj ser ‘grey’ .04
black ba .05 zheltyj zhe ‘yellow’ .04
brown br .04 rozovyj roz ‘pink’ .04
purple pu .02 korichnevyj kor ‘brown’ .02
grey gy .01 oranzhevyj ora ‘orange’ .01

fioletovyj fio ‘purple’ .01
uniform P (t) .09 uniform P (t) .08
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Table 2
Results for development: Mean scoreD (worst–best) across all simulations

English Russian
corpus uniform corpus uniform

perc .75 (.62-.87) .74 (.54-.90) .74 (.68-.79) .64 (.56-.72)
xling .78 (.66-.89) .73 (.64-.83) .78 (.66-.83) .71 (.61-.77)

error-free learner .80 .63
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Table 3
Results for convergence: Mean scoreC (worst–best) across all simulations

English Russian
corpus uniform corpus uniform

perc .96 (.89-.99) .97 (.90-.99) .96 (.88-.99) .96 (.93-.98)
xling .95 (.88-.99) .96 (.90-.99) .94 (.88-.99) .94 (.89-.98)

frequency baseline .20 .22
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yaux dauTicuna

English blue purple

Buglere llugi leren

Didinya culak holia regaculak

Figure 1. Categorization of 10 Munsell color chips (F25-F34) in four languages. Data from
Berlin and Kay (1969) and Kay et al. (2009).
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SOM
[ .3, .6, .1, 0, ... , .82, .21, .54, .91, ... ]

cell

[ 0, 1, 0, 0, ... , .85, .39, .53, .91, ... ]

input item

term features semantic features

term features semantic features

Figure 2. An example of a Self-Organizing Map and an input item.
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l1 l2 ln

Color chips t1 t2 t3 t4 t5 t1 t2 t3 t4 . . . t1 t2 t3 t4 t5

s1 .8 .2 0 0 0 0 1 0 0 0 .9 0 0 .1
s2 1 0 0 0 0 0 .7 0 .3 0 .6 0 0 .4
... . . .
sn 0 0 0 0 1 0 .2 .8 0 0 0 .6 .4 0

Figure 3. An example of the concatenated probability distributions Pl(·|si) for all terms t in
all languages l, where each si is a color chip.
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(b) Russian in the perc space
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(c) English in the xling space
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(d) Russian in the xling space

Figure 4. Category centroids of training stimuli for the two languages in the two feature
spaces, as visualized by a 3-dimensional Multidimensional Scaling (MDS) solution.
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(a) English (b) Russian

Figure 5. Two trained 7× 7 Self-Organizing Maps. The displayed color in each cell is an
approximation in RGB of its feature space coordinates; the two or three letter codes represent
the most likely color term for the cell (see Table 1 for codes). Red squares around a cell and
numbers in parentheses indicate the cells onto which the stimuli of the discrimination
experiment are projected.
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Figure 6. Probability of color term responses to ORANGE and PURPLE, based on counts
reported in Bateman (1915).
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Figure 7. Probability of color term responses to six color stimuli; based on counts reported in
I. Davies et al. (1998).
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stimulus stimulus

within

target              distracter          target  distracter

across

(sinij)                (sinij)     (sinij)             (goluboj)

Figure 8. Two examples of a triplet with a stimulus, an identical target, and a different
distracter from the Winawer et al. (2007) color discrimination experiment. Both distracters are
at the same distance (‘near’) from the stimulus; the distracter in the left example is ‘within’
the same category (both are named as sinij in Russian), while the right one is ‘across’ the
category boundary (the stimulus/target is named sinij, the distracter as goluboj)
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Figure 9. Model predictions for the two main conditions and interaction in the Winawer et al.
(2007) experiment: results are shown as log ratios, where a value of 0 indicates no difference
between the compared values.


