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Abstract

We show, contrary to some recent claims in the literature, that
prototype distributional semantic models (DSMs) are capa-
ble of representing multiple senses of ambiguous words, in-
cluding infrequent meanings. We propose that word2vec con-
tains a natural, model-internal way of operationalizing the dis-
ambiguation process by leveraging the two sets of represen-
tations word2vec learns, instead of just one as most work
on this model does. We evaluate our approach on artifi-
cial language simulations where other prototype DSMs have
been shown to fail. We furthermore assess whether these re-
sults scale to the disambiguation of naturalistic corpus exam-
ples. We do so by replacing all instances of sampled pairs
of words in a corpus with pseudo-homonym tokens, and test-
ing whether models, after being trained on one half of the cor-
pus, were able to disambiguate pseudo-homonyms on the ba-
sis of their linguistic contexts in the second half of the cor-
pus. We observe that word2vec well surpasses the baseline
of always guessing the most frequent meaning to be the right
one. Moreover, it degrades gracefully: As words are more
unbalanced, the baseline is higher, and it is harder to surpass
it; nonetheless, Word2vec succeeds at surpassing the baseline,
even for pseudo-homonyms whose most frequent meaning is
much more frequent than the other.
Keywords: distributed semantic models; word meaning; am-
biguity; prototype models; exemplar models; word2vec

Introduction
A central question for the cognitive science of language is
how word meanings are represented in the minds of lan-
guage users. Distributional semantic models (DSMs) repre-
sent word meanings as vectors in a high-dimensional space
(Landauer & Dumais, 1997; Erk, 2012). The location of these
points is based on the words in the neighbouring linguistic
context (e.g., a window of words around the target word, or
the document the word occurs in). DSMs have been success-
ful in simulating diverse facets of human cognition, such as
similarity judgments and analogy completion (e.g., McNa-
mara, 2011; Pereira, Gershman, Ritter, & Botvinick, 2016).

Given that a vast majority of the words in English (and
presumably most languages) are ambiguous (Klein & Mur-
phy, 2001), the question arises whether a single vector, which
functions as a ‘prototype’ of the word’s meaning, can ad-
equately represent the multiple meanings of an ambiguous
word. Several researchers have argued that this is indeed the
case. Schütze (1998), Burgess (2001), and Kintsch (2001)
each show, using different models and set-ups, how aggre-
gate representations of the context words can disambiguate
ambiguous words. Arora, Li, Liang, Ma, and Risteski (2018)

propose that word vectors are combinations of the vectors of
the component meanings, and that these meaning vectors can
be recovered from the ‘compact’ representation. Further cir-
cumstantial evidence for the adequacy of prototype represen-
tations comes from the fact that the DSMs successfully model
various aspects of cognition even when representing a mas-
sively ambiguous vocabulary (Pereira et al., 2016).

Other work, however, suggests that single vector represen-
tations are inadequate for the representation of word mean-
ing ambiguity. In the computational linguistics literature, this
consideration has led to approaches in which multiple vector
representations are learned for a word, each serving as the
prototype of one of its senses (Reisinger & Mooney, 2010;
Li & Jurafsky, 2015). In cognitive science, this assumption
has led to the proposal of exemplar-based models, in which
a word meaning is represented not as one or more prototype
vectors, but as a weighted trace of the memorized contexts
that a word occurred in. Jamieson, Avery, Johns, and Jones
(2018), for instance, demonstrate that their exemplar-based
model of word meaning representation succeeds where two
widely-used DSMs (LSA; Landauer & Dumais, 1997 and
BEAGLE; Jones & Mewhort, 2007) fail: While the proto-
type DSMs are able to represent the dominant (most frequent)
meaning of a word, subordinate meanings are poorly captured
by a single vector, suggesting that these models cannot reli-
ably identify the intended meaning of an ambiguous word in
context.

Given the general success of prototype DSMs, such a fail-
ure to simulate a key cognitive behaviour would indeed be
worrisome if it applied to the entire class of approaches.
However, Beekhuizen, Milić, Armstrong, and Stevenson
(2018) show in a series of corpus experiments that not all pro-
totype DSMs behave alike in representing ambiguous mean-
ings. In this paper, we will argue that claims concerning the
inadequacy of prototype DSMs are not justified. We will do
so by showing that another prototype DSM, the CBOW al-
gorithm of word2vec, has model-internal properties that en-
able it to disambiguate word meaning, and to succeed at ac-
curately representing the infrequent meaning of ambiguous
words. Crucially, we believe that this success in disambiguat-
ing infrequent meanings is driven by the fact that word mean-
ing interpretation is distributed over two sets of representa-
tions in word2vec.
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Our Approach
Word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean,
2013) is a word embedding model that learns a distributed
semantic space that enables it to best predict words from
their contexts. Figure 1 illustrates the process graphically,
when using the continuous bag-of-words (CBOW) algorithm
of word2vec. Each word in the vocabulary is represented as a
row vector in the context matrix C and as a column vector in
the target word matrix T . At every training step, the model is
given a target word t as well as a window of k context words
on either side of the target word. The model then learns to
best predict the target word from the context words.

To determine its prediction, word2vec first takes the vec-
tor representations in C of the k context words and averages
them, forming the aggregate context vector a. The context
vector a is then compared with the current word representa-
tions in T to predict which word is most likely the target in
that context. Intuitively, the more similar the context a is to
the current vector representation of a word in T , the higher
the predicted probability of observing that word. In training,
after making a prediction for an example context, the model
checks how far it is off from the desired probability distribu-
tion – that is, a probability of 1 for observing the given target
word t and 0 for all other words – and proportionally updates
the vectors in both C and T to minimize this error.

Although word2vec trains both a context matrix C and tar-
get matrix T , researchers typically just use one set of the
trained representations (those of the context matrix C) as the
resulting DSM of word meaning. Then, for disambiguating
a word, a natural approach is to combine the vector repre-
sentations (from that matrix) for the ambiguous word and
its (presumably disambiguating) context words, and then to
compare the resulting vector to other representations – for in-
stance, synonyms of the two possible meaning of the ambigu-
ous word – from the same matrix, under the assumption that
the aggregate vector will be closest to the appropriate syn-
onym (i.e., the one corresponding to the intended meaning of
the ambiguous word). This approach has been explored in
computational linguistics by Iacobacci, Pilehvar, and Navigli
(2016).

In contrast, we propose a novel approach to using
word2vec representations in modeling the disambiguation
process, by drawing on its training procedure to derive the
contextual interpretation of a word. Our insight is that both
the context matrix C and the target matrix T contain learned
knowledge that is important in disambiguation, just as they
work together in the training process to form compatible rep-
resentations of the context and target words (cf. Mitra, Nal-
isnick, Craswell, & Caruana, 2016). Rather than throwing
away this important information and using representations
from just one of the matrices, we use both the C and T ma-
trices: We form an aggregate context vector a using C as a
representation of the context of a word to be disambiguated,
and compare that aggregate vector to representations of syn-
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Figure 1: Word2vec model, using the CBOW algorithm

onyms of its possible meanings embedded in the target word
matrix T .

The use of a part of the training procedure is desirable, as
it addresses an issue Jamieson et al. (2018) raise, namely that
the prototype DSMs that have been shown to work use ad-
hoc patches that are added to the models in order to represent
word meanings in context. For word2vec, the aggregate con-
text vector a is a representation of the context that is native to
the model, as is the process of comparing a to representations
in the T embedding space.

On a conceptual level, we believe that word2vec reflects an
important property of word meaning interpretations, namely
that they are not completely represented ‘in’ the word itself
(cf. Elman, 2009). The word can be thought to provide a
‘sketch’ of the meaning (Levinson, 2000) that is completed
through inferential processes by the linguistic and extralin-
guistic context in which it is embedded (e.g. Sperber & Wil-
son, 1986). This consideration is in fact one of the motiva-
tions of an exemplar-based approach. However, in word2vec
too, ambiguous meanings are similarly not fully ‘represented’
in the word vectors of C or T . Rather, C and T , along with
the algorithm that compares them, share the responsibility for
predicting the target words from the context.

With regard to interpretation of infrequent meanings of a
word, this approach gives word2vec an advantage. Given that
word2vec’s objective is to predict the target word, it suffices
to optimize the representations in T so that the vector of the
ambiguous target word represents just enough of the infre-
quent meaning to enable the appropriate context words to pre-
dict it (cf. the notion of ‘good enough semantic processing’
in Ferreira, Bailey, & Ferraro, 2002; Frisson, 2009). In the
experiments below, we will illustrate how using the context
and target matrix together allows word2vec to represent in-
frequent word meanings and identitfy them in context.

Artificial Language Simulations
As a first proof of concept, we replicate the artificial language
simulation of Jamieson et al. (2018), which compared dis-
ambiguation in an exemplar-based model of word meaning
to two prototype DSMs, and found the latter less successful.
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An artificial corpus was generated in which the homophone
sound form /breIk/ (i.e., the sound of break or brake) was
used in three contexts corresponding to three different mean-
ings (to brake a car, to break the news, or to break a plate;
henceforth all referred to as break). The models were tested
to see whether they could identify each of the three meanings
of break used in various disambiguating contexts (e.g., man
break car, woman break news, woman break plate). Aside
from sentences containing break, sentences with verbs that
are synonymous to one of the three meanings were gener-
ated as well (e.g., woman stop car, man report news, man
smash glass). These unambiguous verbs enabled evaluation
of whether disambiguation models were able to identify the
correct meaning of break in the context. Crucially, the cor-
pus was generated either so that all meanings of break were
equally frequent (balanced), or so that one meaning was 4
times as frequent as the other two meanings (unbalanced).
For further details, see Jamieson et al. (2018).

We replicate this experiment for word2vec by generating
the corpus in the same way as outlined above and train-
ing word2vec on it.1 We then apply our approach using
word2vec (described in the previous section) to see if it can
correctly disambiguate the different meanings of break. To
do so, we see whether the prediction of break in a sample
context (e.g., woman+car) is as strong as the prediction of
the appropriate unambiguous word (in this case, stop), and
much stronger than the inappropriate unambiguous words
(those corresponding to the other meanings of break). Im-
portantly, the approach follows the flow of the learning pro-
cedure of word2vec: we average the representations of the
context words in C to create an aggregate context vector a,
and then compare a to the representation in T of each of the
four different words (break, stop, smash, report) to determine
the strength of prediction.

As Figure 2 shows, word2vec successfully predicts both
break and its contextually appropriate synonym, both for
the balanced corpus (where the three meanings of break
are equally frequent) and the unbalanced corpus (where one
meaning is more frequent than the others). Note that in all
cases, the aggregate context vector is about as similar to the
correct unambiguous verb as it is to break. For example, the
model has learned that in the context of woman and news,
both report and break are similarly predicted, and thus are
similar to each other in this context.

Interestingly, we found that this behaviour is only present
when both C and T are used; when aggregating context word
vectors in C and then comparing them to the vectors of the
unambiguous words in C again, the appropriate disambigua-
tion behaviour was not achieved.2 This means that word2vec

1In all experiments reported, we used the implementation of
word2vec in gensim (Řehůřek & Sojka, 2010), using CBOW
with 200 vector dimensions, a window size of 5, a mini-
mum frequency of 1, and otherwise default parameter settings.
All software used is available as supplementary material at
https://tinyurl.com/w2vcogsci.

2We also tried other ways to use word2vec, including its Skip-

is able to represent the contextually disambiguated meaning
of a verb through the interaction of its context matrix C with
its target matrix T . This behaviour can be expected, as the
training algorithm of word2vec optimizes the similarity of the
aggregate representations in C (i.e., the vector a) to that of the
target word in T . That is: a and the vector of the target word
in T are (by design) embedded in the same space, whereas
an aggregate representation of the context words in T (as op-
posed to the individual words’ representations in T ) and the
vector of the target word in T are not.

Our successful results contrast with those in Jamieson et
al. (2018), who found that, while their exemplar-based word
meaning model (Instance Theory of Semantics, henceforth
ITS) performed well in this task, the two prototype DSMs –
LSA and BEAGLE – were not as successful. In particular,
in the balanced condition, all three models show the desir-
able disambiguation behaviour, but in the unbalanced condi-
tion, ITS can successfully disambiguate, but LSA and BEA-
GLE cannot. For these prototype models, only the most fre-
quent meaning (the stop sense of break) is activated correctly,
whereas the contexts of infrequent meanings (the report and
smash senses) also activate (incorrectly) the most frequent
meaning.

While our approach using word2vec demonstrates that
a prototype DSM can successfully disambiguate infrequent
meanings, a potential point of criticism is that our approach
may work in an artificial setting like this, but not when the
model is trained on a corpus with a realistic vocabulary size
and many more unique contexts. After all, a realistic set-up
necessitates a far greater degree of compression to allow for
a maximally accurate prediction given only 200 dimensions
to store all information in — and thereby a greater chance of
having infrequent meanings being pushed out by the more
frequent ones. Furthermore, the artificial language set-up
tests the disambiguation on the data it was trained on, and so
we are not directly addressing whether the model can carry
out disambiguation in a generalizable way. These issues led
to the design of the next experiment.

Disambiguation in a Naturalistic Setting
While the artificial language experiment provides a proof-of-
concept of contextual disambiguation, it cannot test whether
models have generalizable knowledge that scales to natural-
istic contexts. The obstacle to larger-scale, more realistic
scenarios is that testing disambiguation requires knowing the
“correct” answer – that is, for any given instance of an am-
biguous word in context, we need to know which meaning
was intended in order to judge whether a model is perform-
ing appropriately. This requires a natural corpus that has the
instances of homonyms annotated with the correct meaning
in each case.

Since no such corpora of substantial size exist, we follow
Arora et al. (2018) in adopting a method of using “pseudo-

Gram variant, but CBOW with both C and T matrices was the most
robust with unbalanced homonyms.
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Figure 2: Cosine similarities between the word2vec repre-
sentations of the context words (on x-axis) and the represen-
tations of the target words (in legend), for the balanced corpus
and the unbalanced corpus.

homonyms” – pairs of words that are considered as if they
were a single word. For example, if we consider the set of
usages of pizza and water as if they were a single word with
meanings PIZZA and WATER, then we would have a corpus in
which all the instances in context of pizza water are known
to be disambiguated as either PIZZA or WATER (correspond-
ing to the original word in that instance).

This set-up allows us to present our word2vec-based dis-
ambiguation approach with test cases (contexts containing
a pseudo-homonym), and see whether it can identify which
component meaning of the pseudo-homonym was intended
in that context. We similarly evaluate the performance of ITS
(Jamieson et al., 2018) on the same data, to see how our ap-
proach, based on a prototype DSM, compares to an exemplar-
based approach to word meaning.

We use the TASA corpus of Landauer, Foltz, and Laham
(1998), with the first half of the corpus as training data, and
the second half as test data. Using a training-test split of the
data, we made sure the models were actually tested on their
capacity to disambiguate target words in novel, unseen con-
texts. We sampled 100 pairs of non-homonymous words that
were similar to one of the real homonyms listed in Armstrong,
Tokowicz, and Plaut (2012) in their length, frequency, and
relative frequency of the two component meanings. This was
done to make sure the pseudo-homonyms displayed similar
relevant properties as real homonyms (Piantadosi, Tily, &
Gibson, 2012).3 We next explain how we can test each model
under this approach.
Pseudo-homonym set-up for word2vec. For word2vec,
we need to modify the corpus to enable training on a set

3Due to the random sampling, we ran three simulations, each
with a new set of 100 pseudo-homonyms, and report aggregate find-
ings of the three simulations.

of pseudo-homonyms, which were created by merging two
non-homonymous words – e.g., replacing all instances of the
words pizza and water with the single token pizza water.
The context and target matrices of word2vec were trained
once on the original version of the training data, yielding
C and T , and again on the version with pseudo-homonyms,
yielding C′ and T ′. In this way, we have representations both
for the pseudo-homonyms and for their component words in-
dividually. Then, for each instance of a pseudo-homonym in
the test data, say pizza water, we tested whether its aggre-
gate context vector a from C′ (based on the pseudo-homonym
version of the corpus) was more similar to the correct or in-
correct component meaning representation in T – pizza or wa-
ter – whichever occurred in the original corpus).4

Pseudo-homonym set-up for ITS. ITS (Jamieson et al.,
2018) follows the intuition that an accurate representation
of word meaning is derived from all previously encountered
instances of the word. Starting with words represented as
high-dimensional random vectors, ITS represents the memory
trace of each document in a corpus as the sum of the random
vectors of all the words in that document. Word meanings
in context are then derived from the matrix of memory traces
by presenting the model with a probe in the form of a set of
words, and retrieving its echo: an aggregate of all memory
traces, weighted by how similar they are to the probe. Fig-
ure 3 presents a graphical representation of the echo retrieval
process.

In our ITS set-up, we constructed a matrix of 20K-
dimensional memory traces for the training portion of the
original TASA corpus. Then, for each instance of either of
the component words of a pseudo-homonym in the test data,
a context probe was constructed out of the five words to the
left and to the right of the word (excluding stopwords and
punctuation), plus the two component words of the pseudo-
homonym themselves. The echo of this aggregate probe was
retrieved and compared to the echo of each component word
individually. The component word whose echo had the high-
est cosine similarity to the echo of the aggregate context
probe was selected as the disambiguated meaning.5

Results This approach gives us 91,703 ambiguous pseudo-
homonym tokens in the test data, aggregated over the 3 simu-
lations (on average 306 per pseudo-homonym). We find that
word2vec scores an overall accuracy (proportion of correctly
disambiguated test items) of .85 versus .69 for ITS. This
means that overall, word2vec is better able to disambiguate
words in their naturalistic contexts.

It is important to also consider how these accuracies com-
pare to a chance baseline – is either model doing better than
random guessing? Assuming there is some way to know
which is the most frequent (dominant) meaning, a model that
always guessed the dominant meaning would achieve a score

4To compare vectors from C′ to those from T , we use Orthogonal
Procrustes, a standard method, to rotate T to T ′ so the vectors are all
in a compatible vector space.

5This set-up was found to yield the best results for ITS compared
to other set-ups we tried.
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Figure 3: A visual example of the retrieval of an echo in ITS
through the selective activation of memory traces when pre-
sented with a probe.

of .73 for our pseudo-homonyms – i.e., the average relative
frequency of the dominant meaning. This seems like a rea-
sonable baseline to assume, since we are interested in whether
a model can learn the non-dominant meanings of ambiguous
words. For each simulation, a two-tailed paired-samples t-test
compared the accuracy per pseudohomonym for the model
predictions and the dominant meaning baseline. In all sim-
ulations, word2vec did significantly better than the baseline
(Sim. 1: T = 9.71, p< 0.001 / Sim. 2: T = 11.96, p< 0.001 /
Sim. 3: T = 10.01, p < 0.001). ITS, however, performed sig-
nificantly worse than the baseline (Sim. 1: T = 3.32, p< 0.01
/ Sim. 2: T = 2.34, p < 0.05 / Sim. 3: T = 2.74, p < 0.01).6

Critical for our purposes is whether each model not just
performed accurately for words with balanced meanings, but
also was able to accurately disambiguate cases where one
of the meanings is much more dominant. To assess this,
we look at each pseudo-homonym individually. To compare
fairly across pseudo-homonyms with different baselines (dif-
ferent degrees of dominance of meanings), we need a mea-
sure which looks at the amount by which each model sur-
passes (or falls short of) that baseline. A common measure to
do so is the so-called reduction in error rate over the baseline
(RER), defined as the amount by which the model improves
over the baseline, divided by the error rate of the baseline.7

Figure 4 plots the RER for each pseudo-homonym as a
function of its baseline (the relative frequency of its domi-
nant meaning). The lines indicate the best linear fit between
the two per simulation (all linear fits with Pearson’s r are sig-
nificant at p < .001). Both models display a downward slope
across all simulations. This is unsurprising, since we would
expect for any model that it is more difficult to disambiguate
a very unbalanced homonym toward the infrequent meaning.

However, as can be gleaned from Figure 4, the slopes
for word2vec are less negative than those of ITS, a differ-

6By virtue of transitivity, this also means that word2vec per-
forms better than ITS (Sim. 1: T = 12.13, p < 0.001 / Sim. 2:
T = 11.82, p < 0.001 / Sim. 3: T = 11.23, p < 0.001).

7That is, RER= (model acc−baseline acc)/(1−baseline acc)

Figure 4: Reduction in error rate over the baseline (RER),
aggregated over the three simulations. Dots (orange trian-
gles for ITS, blue circles for word2vec) represent pseudo-
homonyms. Regression lines are given for each simulation
(orange dashed lines for ITS, blue solid lines (all overlap-
ping) for word2vec). The black line represents zero error rate
reduction; values below 0 are error rate increase, above 0 er-
ror rate reduction.

ence that is significant across all three simulations (Sim. 1:
T = 3.03, p < .01 / Sim. 2: T = 4.83, p < .001 / Sim. 3:
T = 2.90, p < .01). This means that word2vec degrades more
gracefully as homonyms become more unbalanced than ITS.
Indeed, ITS only surpasses the baseline for relatively bal-
anced items, and is unable to do better than the baseline for
items whose most frequent meaning has a relative meaning
frequency of around .66 or more. By contrast, the regression
lines for word2vec only touch the null line (meaning always
guessing the most frequent meaning) for the most unbalanced
pseudo-homonyms (right end of the x-axis).

This means that, contrary to the predictions of Jamieson
et al. (2018), and arguments raised in the computational lin-
guistics literature (Reisinger & Mooney, 2010; Li & Juraf-
sky, 2015), not all prototype DSMs are unable to represent
a contextually-resolved meaning of an unbalanced ambigu-
ous word: word2vec performs adequately on such disam-
biguation tasks. Scaling up the disambiguation experiment
to a more naturalistic corpus size and set of contexts, our
approach using word2vec consistently surpasses the most-
frequent sense baseline, and can thus be said to robustly re-
solve lexical ambiguities on the basis of the context words.
Furthermore, word2vec degrades gracefully: it is harder to do
better than chance for very unbalanced items than it is for bal-
anced ones, but word2vec nonetheless on average surpasses
the baseline even for very unbalanced pseudo-homonyms.

General Discussion
In this paper, we set out to show that, contrary to claims
in the literature (Griffiths, Steyvers, & Tenenbaum, 2007;
Reisinger & Mooney, 2010; Jamieson et al., 2018), proto-
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type distributed semantic models are capable of represent-
ing infrequent meanings of ambiguous words. We proposed
that word2vec contains a natural, model-internal way of op-
erationalizing the disambiguation process, and tested this ap-
proach successfully on the artificial language simulations for
which Jamieson et al. (2018) showed that other prototype
DSMs failed.

Importantly, we further assessed whether these results
scaled to the disambiguation of naturalistic corpus examples.
We generated a pseudo-homonym corpus by replacing all in-
stances of sampled pairs of words in a corpus with pseudo-
homonym tokens. We then trained word2vec on one half
of the corpus, and assessed if the model was able to dis-
ambiguate pseudo-homonyms on the basis of their linguistic
contexts in the second half of the corpus. We observed that
our disambiguation approach using word2vec well surpasses
the baseline of always guessing the most frequent meaning
to be the right one, in contrast to an exemplar-based model
(Jamieson et al., 2018). Word2vec moreover degrades grace-
fully: as words are more unbalanced (i.e., as the most fre-
quent meaning has a higher relative frequency), the baseline
is higher, and it is harder to surpass it. Word2vec nonetheless
succeeds at surpassing the baseline, even for very unbalanced
pseudo-homonyms.

A follow-up question is why Word2vec can represent infre-
quent meanings while LSA and BEAGLE cannot. It is tempt-
ing to speculate that this is due to the fact that word2vec vec-
tors are trained to predict words, whereas LSA and BEAGLE
vectors reflect the counting of words, and prediction-based
DSMs have been found to outperform count-based DSMs
(Baroni, Dinu, & Kruszewski, 2014). However, Levy and
Goldberg (2014) argue the skipgram variant of word2vec per-
forms implicit factorization of a count-based matrix in its
objective function, so the actual differences between count-
based and prediction-based models are not completely clear.
This is an open area of research to which our findings con-
tribute an important data point – i.e., that our approach to
using the prediction mechanism of word2vec in semantic
disambiguation outperforms a non-predictive approach us-
ing count-based DSMs (BEAGLE and LSA, as shown in
Jamieson et al., 2018). A relevant future step is the compari-
son of our approach using the CBOW algorithm of word2vec
to other prediction-based models or variants such as skip-
gram (Mikolov et al., 2013), as well as other contemporary
approaches such as GloVe (Pennington, Socher, & Manning,
2014) and ELMo (Peters et al., 2018).

Another option is that it is the use of both the context word
and target word matrices that allows us to achieve these re-
sults. Whereas off-the-shelf vectors have been used exten-
sively in cognitive modeling experiments, our paper proposes
to use a model-internal approach that leverages the fact that
word2vec represents meaning as context word vectors and
as target word vectors. This approach addresses the concern
of Jamieson et al. (2018) that many prototype models only
have ad hoc ways of carrying out the disambiguation proce-

dure. It furthermore instantiates two critical points of the per-
spective on lexical semantics put forward by Elman (2009),
namely: (1) that the drive to predict upcoming (linguistic) be-
haviour has sizable impact on the kinds of representations
learned, and (2) that the interpretation of a word is always
a function of some prior knowledge of the word as well as
its context. It is effectively this idea that, combined with
high-parametric representations and an abundance of data to
train on, has led to the success of contemporary NLP word-
meaning models such as ELMo (Peters et al., 2018).

We would like to argue that because of this distributed way
in which word2vec learns to predict words, its representa-
tions reflect the important point that not all of a word meaning
representation needs to be stored ‘inside of’ the word itself,
but also by how word meanings relate to other word mean-
ings (i.e., the ‘oppositions’ with other lexical items they have;
Trubetzkoy, 1969 (1939)), as well as by rich pragmatic inter-
pretive processes (Sperber & Wilson, 1986; Levinson, 2000).
An important goal for the cognitive sciences of word mean-
ing is to develop computationally precise models of how these
processes work and interact. The present paper constitutes a
stepping stone towards that goal.
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