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Abstract
The constructionist approach to language has long proven its merits as a theoretical

framework guiding linguistic observations. However, relatively little work has been dedi-
cated to providing a precise, formalized definition of constructions and the mechanisms by
means of which they are acquired. In giving an overview of recent work in Data-Oriented
Parsing (DOP), we show how the theoretical development of construction grammar and
usage-based approaches to language acquisition can benefit from the converging evidence
and novel insights that computational models such as DOP can provide us with.

In this chapter, we introduce DOP and compare its properties to usage-based and con-
structionist ideas about the nature of grammar and its acquisition. We discuss the unsu-
pervised incarnation of DOP, U-DOP, and show how it can be used to address nativist
hypotheses about the learnability of grammatical patterns. Finally, we propose an exten-
sion of the formalism that is able to learn a meaning-driven grammar from unstructured
input data.

1 Introduction
Our world is filled with a vast array of objects and their relations and properties. Human
infants face the magnificent task of processing experiences with the outside world in such
a way that they can later on respond in an adequate manner when similar, but non-identical
experiences present themselves. We can call this processing “learning” and an important
question studied throughout the cognitive sciences is how humans do it. One domain for
which this question is especially important, is that of linguistic systems of communication,
as the complexity and open-endedness found therein has led many to believe that some
architectural aspects of the cognitive representations of the phenomenon are not learnable
from positive linguistic input alone. This assumption has led to the conclusion that these
representations are innately present in the language learner and that there are cognitive
mechanisms innately tuned or geared towards acquiring a language (such as a ‘principles
and parameters’ approach, cf. Wunderlich (2007)). With the linguistic nativist conviction
comes the assumption that the representations used are of a fairly abstract nature – after all,
the learner would have to be able to acquire any of the thousands of languages being used
around the world. Nativists, especially within the Minimalist framework (Chomsky 1993),
further support this assumption by pointing to the economy of representation as a driving
factor for having a system that is as compact as possible. Importantly, the innate knowledge
is part of a mental module pertaining only to language. That is, the representations the
learner starts with are domain-specific.
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Another school of thought, the empiricist one, states the child does not come equipped
with inborn, domain-specific knowledge concerning the architecture or properties of a
communication system to be acquired. The acquisition of the complexities of linguis-
tic structure are explained (as far as they are not theory-internal concerns that depend on
one’s preconception of the cognitive representation (cf. Tomasello (2003, p. 7)) from
experience, through domain-general structure-finding mechanisms such as categorization,
schematization and social understanding. Importantly, these mechanisms and represen-
tational biases have to exist in the learner’s mind prior to the acquisition of a language
system. Hence, usage-based theorists cannot be argued to believe in a blank-slate learner.
The crucial difference from a linguistic nativist position is that the mechanisms and bi-
ases are not specific to language, but are shared with other cognitive domains because
they either are functions of how the brain in general works (e.g., working memory, en-
trenchment processes, abstraction) or are part of known evolved cognitive modules (e.g.,
the figure-ground distinction from the visual system, notions of object permanence). With
the nativist position being the dominant one for the last decades, researchers of the em-
piricist bent face the task of showing that there are flaws in the empirical observations or
subsequent inferential processes leading to linguistic nativist conclusions. At the same
time, it is crucial that empiricist theorists develop a substitutive, positive, account of lan-
guage acquisition through experience and domain-general skills. Important work showing
flaws in nativist reasoning and providing a novel account has been done. Construction
Grammar, in many of its flavors (Langacker 1989, Goldberg 1995, Croft & Cruse 2004),
as well as non-constructivist work in language acquisition (Peters 1983) shows how the
nativists’ assumed divisions between the core and periphery of the grammar, meaning and
the grammar, and linguistic competence and performance cannot be maintained, and at the
same time presents an empiricist account of how the architecture and content of linguis-
tic representation emerges as an interaction between a multitude of factors. The work of
Tomasello and colleagues (Tomasello 2003) has shown how understanding other people’s
(communicative) intentions is crucial for and supportive of acquiring a language, demon-
strating how a thitherto overlooked aspect of human cognition solves some of the nativist
arguments against acquiring a grammar from experience, as well as presenting a coherent
explanation of linguistic development.

In this paper, we would like to add something to the developing usage-based con-
structivist narrative. This contribution is in part a methodological enrichment and in part
an account of the possible domain-general cognitive mechanisms behind the acquisition of
the grammatical structures. We believe that computational modeling is an important means
for providing us with important insights in the theoretical perspective. First of all, it forces
us to translate our fuzzy and imprecise natural-language definitions into extremely precise
computational ones. Although this often means a loss in accuracy of description (we will
have to give up on the description of some aspects of natural language for our model to
be understandable), it provides a gain in the testability of certain claims. Using a well-
defined model, then, we can assess claims pertaining to the architecture and content of the
representations, the processing mechanisms and the timescales on which these operate.

The computational model we present in this paper is Data-Oriented Parsing (DOP;
(Scha 1990, Bod 1998, Bod, Scha & Sima’an 2003)), and its instantiations Unsupervised
Data-Oriented Parsing (U-DOP) and Meaningful Unsupervised Data-Oriented Parsing (µ-
DOP). The data-oriented family of models addresses the question how processing com-
plex, structured exemplars, such as linguistic experiences may lead to a cognitive system
by means of which a language user can assign structure to novel exemplars. As such, it
is not a theory about the content of representations, but rather a discovery procedure (for
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learners and linguists alike) for cognitively useful structured representations. In the fol-
lowing sections, we explain the basic ideas behind the models in greater detail, link it to
constructivist assumptions and show how the diverse models can be applied to questions
about the acquisition of grammar.

2 Data-Oriented Parsing
A core question in the usage-based approach to language acquisition is that of grammatical
productivity. How does a learner, be it an artificial one or one of flesh and blood, know,
after having seen a number of exemplars, what patterns it should use to produce and inter-
pret novel utterances? Although many informal discussions of the process have been given
(Tomasello 2003, Goldberg 2006), often with reference to Gentner’s more formalized work
on analogy (Gentner 1983), few models of discovering the productive grammatical units of
a language have been developed so far. Similarly, no existing description of construction
grammar’s parsing principles offers us an account of recombining these productive frag-
ments into analyses of novel utterances. Such an account is desirable, as it can help validate
learnability claims and adds to the possibilities for evaluating the theory against the data. It
should be noted that construction grammar and usage-based theories are not alone in their
lack of precise definitions; it seems that any current linguistic theory has given up on the
construction of a precise, testable model of language use and language acquisition.

Formalizations of learning mechanisms for acquiring a grammar such as Embodied
Construction Grammar (Chang 2008) and Fluid Construction Grammar (Trijp, Steels,
Beuls & Wellens 2009) have been developed over the last decade. Other systems that have
claimed relevance to usage-based theorizing are Memory-Based Learning (Daelemans
& Van den Bosch 2005) and the memory-access and parsing framework developed by
(Jurafsky 1996). All of these add to our understanding, and insight from these different ap-
proaches complements DOP’s contribution, namely a precise account of how Gestalt-like
linguistic units can be discovered in the data. The proposed mechanisms of Data-Oriented
Parsing obviously cannot capture the wealth of linguistic phenomena described in full de-
tail, but aim to give us insight in how complex representations can be acquired from the
input data, and as such can help understand the domain-general learning processes in want
of further specification.

2.1 Data-Oriented Parsing as a constructional learner
Suppose a learner has processed several exemplars, or structured representations of ut-
terances. When processing a novel utterances, the learner can draw on this inventory by
recombining its parts in order to come up with an analysis of the novel utterance.

Now, a novel utterance, say the one in example (1), can be analyzed using parts of
the processed utterances in figure 1. Let us define a legal part, or subtree of a tree repre-
sentation to be a connected subgraph in which all sisterhood relations of the original tree
hold (see Bod & Kaplan (1998) for a more precise definition). Maintaining the sisterhood
means that given the first tree in figure 1, we can have a fragment of S going to NP and VP,
but not S going just to NP (without its VP sister). But most importantly, it is not just the
small parts that can be re-used, larger fragments can be used in analyzing novel utterances
as well. The main claim of Data-Oriented Parsing is that all fragments, irrespective of
size, can be used in analyzing novel utterances. Given this starting point, we have many
ways of analyzing sentence (1). Some of these are given in figure 2. We analyze novel
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Figure 1: A corpus of two processed utterances

utterances by using a legal part of an utterance the learner has seen and ‘subsitituting’ its
leftmost non-terminal symbol (that is: grammatical symbols, such as ‘S’, ‘Det’ and ‘PP’)
with another part the learner has already seen. This procedure is repeated until there are no
non-terminal symbols left, that is: all words of the utterance are present in the analysis.1

The symbol of this substitution operation is ‘◦’.

(1) She saw the dress with the telescope

What we see in figure 2 is that there are multiple analyses possible for the novel ut-
terance, and there are multiple ways to arrive at a single analysis. We call each of these
ways of arriving at an analysis a derivation and a resulting analysis (which can emerge
through different derivations) a parse. The first and third derivation thus give us the same
parse tree, but get there in different ways. The first tree uses only the smallest fragments
possible, while the third tree re-uses larger fragments of the earlier processed experiences.

Now, given this structural ambiguity (traditionally: the PP-attachment problem), the
learner has to choose which of the possible analyses to consider as the right one. This
is where the frequencies of the fragments come in. First, consider a derivation to be a
complex event consisting of a number of smaller events, viz. the subtrees. Suppose that
each of these subtrees has a certain probability. This would mean that the probability of
the event of them occurring together would be the joint probability of all of the individual
events of selecting that subtree. The joint probability of a derivation can thus be given
by the product of the probabilities of the individual subtrees t1 . . . tn that make up the
derivation d:

P (d) = P (t1 ◦ t2 ◦ . . . ◦ tn) =
n∏

i=1

P (ti)

The probability of a subtree, then, can be estimated by the number of times it occurs
in the corpus of processed utterances, divided by the number of times a fragment is found
with the same syntactic category at the root of that subtree. This is to say that the event of
drawing a specific subtree from a bag of subtrees with the same syntactic label in the root

1This procedure may strike some readers as very top-down. Although it is presented as such, the same princi-
ples can be applied in a bottom-up parsing algorithm equally well.
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Figure 2: Three derivations of She saw the dress with the telescope

node is the number of times that subtree occurs divided by the number of subtrees in the
bag. With this estimation procedure, the subtree competes with all other subtrees that can
occur at the same place in a derivation, viz. at an open position in another fragment that
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has the syntactic category of that subtree. Stated more formally:

P (t) =
|t|∑

t′:root(t′)=root(t) |t′|
The estimation of these probabilities thus involves finding all possible subtree types in

all trees in the corpus and establishing their frequency. For a simple tree such as the one in
figure 3, we can extract all possible subtrees and arrive at the set shown in figure 4.
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Figure 3: A simple parse tree
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Figure 4: All subtrees of the tree in figure 3

Now, we have multiple derivations leading to the same parse of an utterance, as we have
seen in figure 2. We determine the probability of a parse to be the sum of the probabilities
of all derivations yielding that parse tree. Again, this is grounded in relatively simple
probability theory: the probability of a parse is the probability of either derivation one
leading to that parse, or derivation two, or derivation three, and so forth, and so it is the
sum of the probabilities of the individual events. For any parse tree t we can thus calculate
the probability as follows:

P (t) =
∑

d is a derivation of t

P (d)

We then select the parse with the highest probability mass to be the most likely analysis
of the novel utterance (cf. Zuidema (2006) for a discussion of this and other estimation and
evaluation methods).
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It is important to note that, using the same mechanisms, DOP can also generate utter-
ances from the grammar. This process boils down to probabilistically selecting a subtree
fragment rooted in the starting label, and expanding its open substitution sited by other sub-
trees. When coupled with meaning, this approach can give us a Data-Oriented generator
as well.

2.2 DOP as a usage-based, constructionist model
DOP shares most of its core principles with the usage-based constructionist approach. In
this section, we discuss on what theoretical positions DOP and the usage-based construc-
tionist approach converge.2

An important effect of this modeling procedure is that the most likely parses will be the
ones that have derivations consisting of a few larger subtrees. Why is this? The probability
of a derivation will generally be higher if it consists of fewer subtrees because there are
fewer subtree probabilities to multiply. Hence, the model has a bias towards interpreting
utterances by using as few and hence as large fragments as possible. In that sense, the
model tries to maximize analogy with the previously processed utterances and by doing
so, the model adheres to the usage-based principles that grammatical productivity comes
about through experience and a domain-general ability to make schemas (Tomasello 2003,
Gentner 1983).

The reliance on experience is another aspect on which usage-based constructionist ap-
proaches and DOP converge. First of all, the hypothesis space of possible grammatical
constructions emerges through the experience with language, as well as the conception
that we have to understand language, at least to some extent, hierarchically (see Frank,
Bod & Christiansen (2012) for arguments why hierarchical processing is not a procedure
applied all the time). Hierarchicality, then, does not have to be the a priori template for
a learner to understand language. The learner may start with a number of possible data
structures, some of which are hierarchical and some are not, and find out, in response to
processing the data that a hierarchical template to store, process and produce language may
be an optimal cognitive strategy (Perfors, Tenenbaum & Wonnacott 2010). For this paper,
we assume that this property of language has been discovered.

Secondly, experience means that routinization and Gestalt-like effects take place (Bybee
2006). It is well known that frequency affects language use, at the very least by governing
choice among acceptable alternatives (Schuchardt 1885, Mehler & Carey 1968, Jurafsky
2003). DOP incorporates this insight by allowing for larger fragments to be stored and
used as Gestalts in linguistic processing. Moreover, the trade-off between computation
(composing two fragments by the substitution operator) and storage (using one larger frag-
ments) is driven by frequency as well: the more likely the parts are relative to the whole,
the more likely a computed analysis (as opposed to a retrieved one) is. But most impor-
tantly: it does not have to be either/or. Because all derivations, whether they are directly
retrieved as one chunk, or composed of minimal bits, are used in calculating the probability
of the analysis, DOP avoids the rule-list fallacy (Langacker 1989, ch. 1): language users
maintain both, sometimes perhaps redundantly.

Furthermore, DOP starts from the same maximalist conception of language as con-
structionist approaches do. This conception entails a couple of things. First, the basic
building blocks are heterogeneous in size. This means that they can be small, like words

2For a more thorough discussion of the principles of experience, heterogeneity and redundancy, see
Beekhuizen, Bod & Zuidema (2013)

7



or depth-one rules, or larger. And it means that they can be abstract, having no lexical
material, or highly concrete. An important insight following from this principle and the
previous one is that rules and exemplars are not ontologically different entities, but are
created out of the same matter, viz. processed experience. Every subtree in DOP then,
is a schema from the processed experience that can be recombined with parts of other
experiences to understand something novel. These ideas resonate core properties of a con-
structivist, usage-based understanding of grammatical knowledge (Croft & Cruse 2004, ch.
10-11).

Finally, the inventory of the basic building blocks may be redundant, as hinted at earlier.
DOP gives the artificial learner fragments which it can, in principle, build up out of other
subtrees it has. The idiom What time is it? can of course be built up out of its components,
but there is reason to believe that language users keep a representation of the whole in
mind as well (Bybee 2006).3 Although this is not a position shared by all constructionist
linguists (Construction Grammar tries to minimize redundancy for instance (Fillmore &
Kay 1996)), the usage-based theorists seem to embrace this idea. Accepting redundancy
as a core property of the linguistic system follows rather naturally from the rejection that
linguistic structure has to be either stored as a rule or as a list (i.e., the rule-list fallacy, cf.
Langacker (1989))

In fact, the DOP framework has been used to address issues in language acquisition
that relate to the issues of heterogeneity and redundancy. Given a hypothesis space of all
possible subtrees, we can find out what set of subtrees was most likely used in deriving
an utterance. Without going into the details, Borensztajn, Zuidema & Bod (2008) did so
for a syntactically annotated corpus of young children’s utterances. What they showed was
that, in line with the usage-based perspective, the most likely subtrees behind the children’s
utterances become more abstract with age. More examples of applying the DOP principle
to language acquisition can be seen in the next sections.

2.3 Analogy, acquisition and the unlearnable
If we think about DOP as a model of language acquisition, the model effectively says that
children acquire grammar by constructing analogies with previous utterances, guided by
statistical generalization. This starting point, of using analogy to construct a grammar,
has not gone unchallenged in linguistic theorizing. Examples of linearly similar but struc-
turally different sentences, as discussed by Pinker (1979) and Chomsky (1986), show how
proportional analogy, the simplest format of analogical reasoning, might lead a learner to
wrong conclusions (this particular example being Pinker’s):

(2) John likes fish : John likes chicken :: John might fish : John might chicken

(3) Swimming in the sea is dangerous : The sea is dangerous :: Swimming in the rivers
is dangerous : The rivers is dangerous

As Pinker and Chomsky correctly point out, analogies like these do not hold because
there is no notion of structural dependency, nor a concept of syntactic category that would
be required to make them work. However, this is not a problem of analogical reasoning
per se, but rather of the structure and content of the input analogical reasoning applies to.
Analogical reasoning, which can be described as trying to solve a problem (categorizing an
object, parsing an utterance) by comparing our knowledge about the object to a knowledge
base of similar objects. If we grant people the ability to infer grammatical categories and

3That is, regardless of whether this whole is opaque to the user or whether its constituency is transparent.
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hierarchical representations for sentences, analogical reasoning over such a knowledge
based would not come up with the erroneous predictions of the grammaticality of John
might chicken. If we let the the learner make the analysis without anything like grammatical
categories or a notion of hierarchical structure, we do arrive at this prediction. Hence, it is
not the mechanism that yields ungrammatical results, it is the nature of the content.

An extension of the original DOP model presented in the previous sections, Unsuper-
vised Data-Oriented Parsing, or U-DOP, has been developed as an attempt to address this
issue. Unsupervised techniques, developed in machine learning, allow a learner to build up
some representation (of structure or categories, for instance), without having ‘correct’ rep-
resentations for a set of training items (which would be supervised learning). Instantiated
in U-DOP, these techniques grant the learner the domain-general starting point of under-
standing data as hierarchically structured, that is, as containing different levels of analysis,
in which a concept on one level is triggered by (communicatively, cf. Verhagen (2009)) or
consists of (cognitively) small, less inclusive parts, but do not give the learner the correct
analyses of the structure to train on. These assumptions are not language-specific, as we
can apply the template of meronymy (the consists-of relation) to our understanding of body
parts, artefacts, grouping relations of identical individuals, only in language we combine it
with symbolic understanding (the triggered-by relation).

Using the idea that language is hierarchical and a more strict notion of analogical rea-
soning, U-DOP can be shown to predict the ungrammaticality of The rivers is dangerous
(Bod 2009). It also predicts that a child can learn that, if it wants to form a polar inter-
rogative of a sentence like (4), it’s not the first (as in example (5)) but the second is (as in
example (6) that is produced at the front of the utterance.

(4) The man who is sick is singing.

(5) *Is the man who sick is singing?

(6) Is the man who is sick singing?

How does the model acquire these dependencies correctly? Unlike DOP, U-DOP as-
sumes that the learner does not know how to interpret its initial input. Instead, the learner
will store all possible analyses of the input, and uses that as a basis for extracting sub-
trees and estimating their probabilities. Furthermore, we leave the problem of syntactic
categories out of scope for now, focussing solely on the hierarchical structure. Effectively,
all nodes in the tree representation, except for the lexical leafs, are of the same category,
say ‘X’, and can thus be substituted for one another with the combination operation. So,
suppose the U-DOP learner has heard the two utterances the dog walks and watch the dog.
Each of these has two possible analyses:

X

X

X

the

X
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X
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X

X

the

X

X

dog

X

walks

X

X

X

watch

X

the

X

dog

X

X

watch

X

X

the

X

dog

Figure 5: The analysis of the two utterances the dog walks and watch the dog

From this collection of all possible analyses, we can extract all possible subtrees, just
like we did with DOP. What will become immediately clear, is that a subtree like [ [ the ]X
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[ dog ]X ]X forms a reliable constituent, being found in two out of four parse trees. A less
reliable subtree is [ [ dog ]X [ walks ]X ]X , which is only found in one parse tree. Using
these subtrees, then, we can infer the hierarchical structure of an unseen utterance.

In order to do this, we use a stricter notion of analogy than in DOP. U-DOP starts
from the insight that the more similar a novel analysis is to earlier analyses, the better an
analysis it is. The model will therefore choose in the first place that parse tree that has the
shortest derivation. We consider the length of the derivation to be the number of subtrees
used in that derivation. Often, there are multiple parse trees that have an equally long
derivation. In that case, the learner selects the most probable parse among the ones that
have the shortest derivations. The probability of the parse is calculated as in DOP. This
idea of selecting the most probable parse from among the shortest-derivations (MPSD) is
in essence a probability driven model of analogy.

When we train this model on child-directed speech, we can simulate the acquisition
of hierarchical structure and grammatical dependency. If we train U-DOP on the Adam
corpus (Brown 1973), which consists of two hours of child directed speech per fortnight
over the course of approximately two years, which constitutes only a fraction of a child’s
input, the model correctly assigns more probability to a sentence like 6 than to one with
the wrong auxiliary at the sentence-initial position 5 (Bod & Smets 2012)

Why is this of interest? The issue of auxiliary-fronting with subjects that have relative
clauses has been a parade case for nativist approaches to grammar. Crain (1991) and others
have tried to argue that the fact that children make no errors like the one in (5) when
learning these patterns shows that they directly home in on the correct hypothesis, i.e.
that there is a main clause and a subordinate clause, and that the auxiliary in main clause
ought to be fronted. U-DOP uses no concepts of ‘clause’ to explain the phenomenon,
but grounds it in the experience of a learner and its attempt to stick as close as possible
to that experience. A typical nativist argument against the use of experience is that this
specific construction is rarely, if ever, observed in the primary data, yet children seem be
sensitive to the difference in grammaticality between examples (6) and (5). U-DOP tackles
this problem by saying that we can combine subtrees from different processed utterances.
A learner may have never seen a case of auxiliary fronting with a subject containing a
relative clause, it will probably have processed some auxiliary fronting without subjects
with a relative clause as well as some relative clauses in other grammatical constellations.

Subtrees from these parses make the learner able to produce a more probable short
derivation for sentences like example (6), but not for cases like (5). A pattern like the X
who is X might be used, along with is X singing. However, the model will have never or
very scarcely seen patterns like who sick or is X is singing. Because of this, the model
with find more probable short derivations for the good pattern, and longer, or less likely
derivations for the erroneous one. The observed behavior of the model is in line with the
pattern of errors observed in Ambridge, Rowland & Pine (2008)

Moreover, this manner of analyzing the learnability of complex grammatical phenom-
ena can be extended to other cases. Whereas most empiricist computational linguists use
a specific model to address a specific phenomenon in order to refute nativist explana-
tions (e.g., auxiliary fronting (Clark & Eyraud 2006) or anaphoric one (Foraker, Regier,
Khetarpal, Perfors & Tenenbaum 2009)),4 Bod & Smets (2012) show that a single, unified
model, viz. U-DOP, can learn (virtually) all existing cases of hierarchical dependencies
that are thought of as unlearnable. Work like this complements the analysis done by Pul-
lum & Scholz (2002) and show how general learning and structuring principles may lead

4See Clark & Lappin (2011) for an overview of different refutations using different models
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to the behavior or judgements we can observe. As such, they provide us with a cognitively
leaner, simpler and hence a priori more likely model of the acquisition of grammatical
structure.

3 Meaning
One crucial aspect of constructional approaches has been ostensibly lacking from the dis-
cussion so far: meaning. Constructional theories hold that the grammatical building blocks
are pairings of some signifying form with a signified meaning. Although much work in
DOP has been done on grammatical form per se, the model is not incompatible with this
approach to grammar. In fact, the model has no restriction on the representation it pro-
cesses, as long as they are well-formed according to some formal criterium. This follows
from the claim that DOP is a domain-general learner; as such it has to be able to detect
structure regardless of the topology or content of the structure.

DOP has a long history in trying to accommodate meaningful representations. (Bonnema,
Bod & Scha 1997) can be seen as a first attempt. In this model, the syntactic represen-
tations on the tree’s nodes were enriched with lambda-calculus logical formulae. Later
developments were the integration of DOP and Lexical-Functional Grammar (LFG-DOP,
(Bod & Kaplan 1998) and Head-Driven Phrase Structure Grammar (HPSG-DOP, (Arnold
& Linardaki 2007)). Building on the insights of these models, we propose an unsupervised
variant of Data-Oriented Parsing that incorporates meaning. Because this is the first explo-
ration of an unsupervised learning mechanism to meaning-enriched structures, we chose
not to use the rich representations of LFG or HPSG, but rather take a very simple and lim-
ited formalism to illustrate the priniciple. We will show how it functions, how a learner
may derive productive patterns with it, and what its limitations are.

3.1 A U-DOP approach to learning meaningful grammars
What would acquiring a grammar involve, if we use the constructionist starting point of
form-meaning pairings as the basic building blocks of a language? First of all, the prob-
lem of learning the mapping has become bigger, as not only word-meaning mappings have
to be learned, but also mappings between all other kinds of constructions and meanings.
Secondly, the learner would have to have some mechanism for arriving at a set of schemas,
productive and less so, that allow it to talk about novel events and understand novel utter-
ances. Thirdly, the model would have to be incremental: we cannot expect a real language
learner to wait until it has seen some number of utterances. As we will see, incrementality
in fact does not make the problem bigger, but rather can function as a bootstrap for the
learner.

The basic idea behind meaningful U-DOP, or µ-DOP, is that a learner analyzes a sen-
tence using meaningful, heterogeneously sized and possibly redundant hierarchical rep-
resentations. It starts analyzing utterances with the fragments it knows already, and then
maps the unanalyzed parts of the utterance with parts of the semantic situation that are
unexpressed in the analysis, thereby filling the gaps in its knowledge. Next, it decomposes
these analyses and adds them to its knowledge base.

In this experiment, we describe a learner that can deal with very simple meaning repre-
sentations. For understanding more complex semantic operations, obviously more complex
representations are needed. The goal, however, is not to develop an account of meaning,
but rather to show how DOP can acquire symbolic structures (i.e., form-meaning pairings)
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of different size, complexity and abstractness. By doing so, we show how the concept of
building up meaningful constructions works with an unsupervised Data-Oriented model
and how the acquired representations are in line with the constructivist understanding of
language. As such, we argue that DOP is a substrate-neutral learner (as long as the sub-
strate can be structured in some graphical way), that can be thought of as domain-general.

How can we envisage the representation of an analysis in µ-DOP on which the data-
oriented learning algorithm applies? It has to contain hierarchical structures, meaning rep-
resentations and represent words. As a simple formalism for representing meaning, we use
predicate logic, restricted to representations of predicates and entities. The semantic rep-
resentations take the place of the syntactic categories of DOP as the contents of the nodes
in the analyses. A node may contain a value of a variable (predicate or entity), denoted as
P : watch for the predicate watch or e : John for the entity John, or denote an operation
on its constituent parts. watch(e1,Mary), for instance, means that there is some entity
that fills the slot position e1 that can be found somewhere else in the subtree. Fragments
like these can be combined by logical composition. Suppose we have the fragments in
figure 6. We can compose these and the interpretation will be hit(John,Bill), as the slots
with which the two small, word-like subtrees are combined, dictate which entity is the first
argument (e1) and which the second (e2). Not all (legal) fragments can be composed: the
subtrees in figure 8 cannot be composed, as there is no slot in the subtree to the left to fit
P : hit to: both open positions are of the category e.

P : hit(e1, e2)

e1 ·

·

/hits/

e2

◦ e : John

/John/

◦ e : Bill

/Bill/

= P : hit(e1, e2)

e : John

/John/

·

·

/hits/

e : Bill

/Bill/

Figure 6: Legal composition of three subtrees. The empty nodes (visualized with · as the
node label) are necessary to preserve binarity, but do not have any analytical significance. The
character before the colon in the top-node of a subtree represents the semantic category of the
subtree.

Let us look at the learning procedure taking us to an inventory of such subtrees step by
step. First, the learner analyzes a sentence using its inventory of grammatical patterns. Ini-
tially, this inventory is empty, but as the learner processes more utterances, it will become
bigger. Suppose for the sake of the argument that the learner knows that the word /John/
means that there is an entity called John, or e : John. This can be represented as a simple
subtree, connecting a node e : John with a node /John/. Suppose the learner also knows
that the word /Mary/ refers to an entity called Mary.

The learner hears an utterance like John watches Mary, uttered in the context of John
watching Mary and Mary walking. What the learner will try to do, then, is analyze this
utterance using its known constructions, i.c. the word-meaning pairing for /John/ and for
/Mary/. If the learner does not know how to analyze the utterance, it can use a meaningless
binary subtree (with a very small probability) to combine any two fragments. Analyzing
John watches Mary we arrive at two analyses, as follows.

In both parse trees, we arrive at an interpretation that involves at least an entity called
John and one called Mary. When trying to understand what situation the utterance refers
to, the learner can now exclude that of Mary walking, as it has seen a known fragment
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/hits/e
1

e
2

hit(e
1 
,e

2 
)

signified component

construction

signifying component
/John/

e: John
 

/John/

e: Bill
 

/Bill/ /hits/e
1
:John

hit(e
1 
,e

2 
)

/John/

e
2
:Bill

/Bill/

Figure 7: The composition of figure 6, represented in box diagrammes. Note that the two
poles of the construction correspond to Verhagen’s (2009) conception of the construction as a
symbolic assembly

P : hit(e1, e2)

e1 ·

·

/hits/

e2

◦ P : watch

/watches/

= ILLEGAL

Figure 8: Illegal composition of two subtrees

e : John

/John/

e :Mary

/Mary/

Figure 9: The starting knowledge of the model in the example

that refers to John, who is not a participant in the situation of Mary walking. The learner
will then try to complete the analysis by adding parts of the semantic representation to
the analyses. Because the learner does not know to what nodes of the analyses these
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·

·

e : John

/John/

·

/watches/

e :Mary

/Mary/

·

e : John

/John/

·

·

/watches/

e :Mary

/Mary/

Figure 10: Two analyses of John watches Mary

representations belong, it will try all possible combinations and store them in its memory.
The distribution of unseen meanings is guided by the constraint that the same fragment
of meaning does not occur twice in the utterance. This constraint can be seen as a form
of a mutual exclusivity constraint or as more simple Gricean pragmatic reasoning (i.c.
balancing the maxims of quality and quantity).

To what observed situations can the partial analyses in figure 10 apply? Recall that
two situations take place, viz. John watching Mary and Mary walking. The second can
be excluded, as John, who was found to be referred to in both analyses, is no part of it.
This leaves us the first one, and the model will try to complete its analyses using parts
of that meaning. If there were more situations compatible with the inferred meaning in
an analysis, all of them would be used in the add-unseen-meaning step to complete that
analysis.

In our example, we have two analyses, both of which can be mapped to the situation
watch(John,Mary). In both cases, the learner has found the meaning e : John and
e :Mary and hence it is missing the part watch(e1, e2). This partial semantic representa-
tion can be further decomposed into P (e1, e2) and P : watch (in general: the models tries
all decompositions of the unobserved parts of the meaning) and these partial representa-
tions can be distributed over the nodes in the tree that were unanalyzed according to the
constraint discussed before. This is effectively a U-DOP approach to semantic representa-
tions: we take all parts of all missing semantic representations, all nodes in the tree analyses
of an utterance and map them to each other, letting the statistics decide which ones would
be relevant for analyzing novel utterances. For the first analysis of John watches Mary and
the representations we found missing, we can add them to the partial analysis in the ways
given in figure 11.

Using these completed representations, we can update our inventory of subtrees that
can be reused in analyzing new utterances. We define DOP’s decomposition operation here
to take all connected subgraphs of the parse tree that have both a root node with a semantic
representation, and only leaf nodes with either semantic or phonological representations in
them. That is, the two subtrees in figure 13 are excluded on these grounds (not a meaningful
root, not all leaf nodes are meaningful), whereas all legal subtrees of the third completed
analysis in figure 11 are given in figure 12. When decomposing a tree, leaf nodes retain
only the type and its index, so that an indexed slot comes into existence. The non-trivial
part of the decomposition operation is that a tree can be decomposed only at nodes where
a meaning representation is found; nodes lacking these are taken to be ‘internal’ (signified
with a dot ‘·’) and are not used in the interpretation process in any way, but are retained
only to maintain (the positive computational properties of) binarity.
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P : watch(e1, e2)

·

e : John

/John/

·

/watches/

e :Mary

/Mary/

P : P (e1, e2)

P :Watch

e : John

/John/

·

/watches/

e :Mary

/Mary/

P : P (e1, e2)

·

e : John

/John/

P :Watch

/watches/

e :Mary

/Mary/

P : watch

P (e1, e2)

e : John

/John/

·

/watches/

e :Mary

/Mary/

P : watch

·

e : John

/John/

P (e1, e2)

/watches/

e :Mary

/Mary/

·

P : P (e1, e2)

e : John

/John/

P : watch

/watches/

e :Mary

/Mary/

·

P : P : watch

e : John

/John/

P : P (e1, e2)

/watches/

e :Mary

/Mary/

Figure 11: All additions of unseen meaning to the first analysis in figure 10

Among these decompositions, we can find various structures that remind us of con-
structions as we know them. There are words, fully open patterns, ones with only lexical
items as leaf nodes and everything in between. All of these have the same ingredients: a
graph structuring the part-whole relations with phonological or semantic structure as the
content of the nodes. Our procedure, of trying to parse an utterance, adding the unseen
parts of the meaning to unanalyzed parts of the utterance and decomposing that thus pro-
vides a learner with a way of discovering the patterns that are useful for understanding
novel language material.

However, in a more realistic setting, there may be many analyses that are incorrect and
thus harm the model if their parts are added to the inventory of fragments. Do we add all
of these to the knowledge base for interpreting the next utterance too? In fact, we don’t
have to, as DOP provides us with a good mechanism to separate the wheat from the chaff,
namely the probabilities of the analyses.

As in DOP, the most likely analysis of an utterance is the analysis that has the highest
probability mass summed over all of its derivations. The probability mass of a derivation,
then, is given by the joint probability of all the subtrees used. Since the model has to add
unseen rules, we have to reserve some small probability for these. We do so by smoothing
the probability of the seen rules, so that some probability mass becomes available for the
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P : P (e1, e2)

·

e : John

/John/

P : watch

/watches/

e :Mary

/Mary/

P : P (e1, e2)

·

e : John

/John/

P : watch

/watches/

e2

P : P (e1, e2)

·

e : John

/John/

P

e :Mary

/Mary/

P : P (e1, e2)

·

e : John

/John/

P

e2

P : P (e1, e2)

·

e1 P : watch

/watches/

e :Mary

/Mary/

P : P (e1, e2)

·

e1 P : watch

/watches/

e2

P : P (e1, e2)

·

e1 P

e :Mary

/Mary/

P : P (e1, e2)

·

e1 P

e2

P : watch

/watches/

e :Mary

/Mary/

e : John

/John/

Figure 12: Legal subtrees of the third analysis in figure 11

P (e1, e2)

· e2

·

e1 P

Figure 13: Illegal subtrees of the third analysis in figure 11

unseen components.5

We weight all parse trees by their probability before decomposing them, so that the
subtrees from the more likely analyses will be more likely to be reused in subsequent
analyses. The subtrees in figure 12 thus are not added to the inventory of patterns with a
frequency of one, but with a frequency of one times the probability of the derivation. After
all subtrees are added, we can recalculate the probability of every subtree in the same way
as we did with DOP, viz. by dividing its (weighted) frequency by the summed (weighted)
frequencies of all subtrees sharing the exact content of the root node, i.e. the semantic
representation of it.

Expanding the DOP-idea to another representation, we can see what Data-Oriented
Parsing can and cannot do, as well as what the assumptions of the model are. The model is
not a category learner: semantic structures and their combinatoriality, and sound structures
are assumed as given information to the model. The power of DOP is then to recognize
productive, complex patterns in the structured data given these assumptions. To this end,
the model tries all possible structures (the unsupervised component) as guided by the con-
text, but uses this information judiciously by weighing it according to the model’s prior
knowledge. The main assumptions of the model are in the construction of likely analyses,

5More precisely, we used Simple Good-Turing smoothing (Gale & Sampson 1995).
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which have been argued to be driven by pragmatic processes (match with the situation and
a mutual exclusivity bias), and the deconstruction of complex wholes, where slots are as-
sumed to be necessary meaningful. This latter constraint is motivated by a learner’s desire
to communicate: if a slot of a subtree specifies some meaning (an entity or a predicate)
co-indexed with the subtree’s global interpretation pattern in its root node, the learner can
use it productively for generating and understanding novel utterances. If no such constraint
is present, the pattern cannot be used, and the learner will not bother to extract it.

3.2 An experiment with artificial data
Can the model described above induce a grammar from utterances and situations these ut-
terances are found in? As an initial test, we used artificial data loosely based on natural
language to see if the model was able to discover patterns that allowed it to find the situation
that the utterance was intended to refer to. The model saw each sentence paired with seven
situations (which are represented as predicate-argument structures), of which one was the
intended one. There were eight entities, (Abe,Ben,Carl,Didi, Ed, Fay,Gerold,Hannah),
four single-place predicates (laugh, cry, turn.fifty, die, and four two place predicates
(see, shave, hit, push). In total, there were 8× 4+8× 8× 4 possible predicate-argument
structures. Obviously, this is a gross oversimplification of the issues a child faces (it ignores
the packaging problem (Gentner 1982, Gleitman 1990), does not use extralinguistic under-
standing of speaker intentions (Tomasello 2001) and overly restricts the space of possible
situations), but as a toy example demonstrating the dynamics of the model, it will do.

The intended predicate was expressed by a simple subject-verb-object sentence if it
was transitive (e.g. Carl hits Ben for hit(Carl, Ben), and a subject-verb sentence if it
was intransitive (e.g. Carl cries for cry(Carl). If the subject and object were corefer-
ential, the pronoun himself was used at the object position (e.g. Carl hits himself for
hits(Carl, Carl)), except in the case of the predicate shave, where the object is simply
not expressed if it is coreferential with the subject (e.g. Gerold shaves for shaves(Gerold,Gerold)).
Two other exceptions are the predicate turn.fifty, which is expressed with the verb-
object idiom see Abe, so turn.fifty(Didi) is expressed with Didi sees Abe, and the
predicate die, which is expressed with the verb-object idiom kick bucket, so die(Carl)
is expressed with Carl kicks bucket.6

Using this system, we can generate artificial data. From our 288 possible predicate-
argument structures, we select seven at random for every entry. One of these seven is
expressed according to the rules mentioned above. With this procedure, we generated
twenty data sets of 1200 entries each. Because we are sampling, we have to repeat the
experiment so that we know the results are not due to chance. Moreover, this gives us an
insight in what it might mean for the cognitive representation of different learners acquiring
a grammar from (slightly) different input. Furthermore, note that unlike in the example we
gave earlier, here the model starts with an empty inventory. It will thus have to learn words,
grammatical patterns and their meanings.

We measure the success of the model by evaluating if it can find the correct situation
given the utterance. Because µ-DOP is a discovery mechanism rather than a declarative
model of how the grammar should look like, we cannot evaluate if the parses are good or
not, only whether they lead to interpretations that were intended. We will have a closer,
more qualitative look at the parse trees that the model produces.

6For the puzzled reader, the first idiom is loosely based on the Dutch idiom Abraham zien, ‘lit: to see Abraham;
to turn fifty’
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How well can the model find the intended predicate-argument structure from among the
seven ongoing situations at that moment? Figure 14 shows the performance at each trial
for all of the twenty simulations, with every dot standing for the average of the model’s
performance over the twenty samples. So, after having seen zero utterances, the model will
be inconclusive about what situation utterance one refers to, and will therefore predict none
of them correctly. With only a few subtrees in its inventory, it will be making mistakes,
but we can see that after about 250 situations the model reached its asymptotic peak in
performance at understanding around 90% of cases correctly.7
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Figure 14: The average accuracy of µ-DOP in the first 500 trials

So exactly what patterns does the learner use to understand the utterances? Let us take
a closer look at three cases.

First, the intransitive pattern was after a few instances being used as a fully abstract
pattern. So the most likely derivation of a sentence like A walks is the one in figure 15.
The model probably directly inferred this abstraction, because the semantic representations
are very simple. Given these simple representations, the generalization quickly pays off:
breaking down the analysis into its smallest component parts allows the learner to use the
words and the more abstract pattern. Note that this means that there are no restrictions on
the nature of P : there is nothing witholding the parser from substituting P with a transitive
predicate like P : see

A second case is that of the sees Abe-construction (meaning that the subject turns fifty).
This case is interesting, because it shows the effect of slightly different inputs on the learn-

7It should be noted here that the line in the figure oversmooths the data; it should be interpreted as merely
indicating that the model displays a learning curve leading up to an asymptote. The actual curve seems to rise in
a much steeper way.
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P (e1)

e1 P

◦ e : Abe

/Abe/

◦ P : walk

/walks/

= P (e1)

e : Abe

/Abe/

P : walk

/walks/

Figure 15: Most likely derivation for Abe walks

ers. Recall that we generated twenty different corpora of utterance-situation pairs. Because
all of these are different, learners might extract different patterns. It may be that later they
converge on the same representation, after having seen more evidence, but they may also
retain different representations. As long as this does not hamper communication, that is
not a problem. For the sees Abe-construction, we see such a development. Basically, there
are two paths the learners take. In the first, they almost directly infer that /sees/ + /Abe/ is
a chunk that should be treated as a whole and that combines with the intransitive pattern
and a subject to form a parse (see Analysis 1 in figure 16). However, six out of fourteen
learners started with another, communicatively correct analysis, viz. Analysis 2 in 16.
These analyses lead to the same interpretation, and hence are fine for these six learners
to use. However, after having seen more utterance-situation pairs, all learners abandon
Analysis 2 in favor of Analysis 1. Arguably, they do so because the patterns decomposed
from Analysis 1 will be reinforced more over other analysis (the pattern where /Ed/ + /sees/
means e : Ed and the one where /Abe/ means P : turn.fifty can only be used rarely,
and hence will obtain lower frequency scores over time, whereas /Ed/ meaning e : Ed are
often reused in analyzing all sorts of sentences.

Analysis 1 P (e1)

e1 P

◦ e : Ed

/Ed/

◦ P : turn.fifty

·

/sees/

·

/Abe/

= P (e1)

e : Ed

/Ed/

P : turn.fifty

·

/sees/

·

/Abe/
Analysis 2 P (e1)

e1 P

◦ e : Ed

·

/Ed/

·

/sees/

◦ P : turn.fifty

/Abe/

= P (e1)

e : E

·

/Ed/

·

/sees/

P : turn.fifty

/Abe/

Figure 16: Two analyses of Ed sees Abe in the situation where turn.fifty(Ed) is present

Another interesting aspect of the sees A construction is that it is ambiguous, in princi-
ple, between a literal reading (see(e1, Abe)) and an idiomatic one (turn.fifty(e1)). Thus,
when facing a sentence E sees A and both the situations see(Ed,Abe) and turn.fifty(Ed)
are present in its context, the model cannot make a well-founded choice. In our experi-
ment, the learner selected the former situation as the intended one, presumably because
of the higher frequency of see(e1, e2) situations (with eight subject and eight objects: 64
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instances) than turn.fifty(e1) situations (with only eight subjects: 8 instances).
A final case is that of the no-reflexive construction. With the predicate shave and a

coreferential subject and object, the reflexive is left out, so shave(Ben,Ben) is expressed
as Ben shaves. How does the learner respond to these sentences? In nineteen out of twenty
cases, it will arrive at an analysis such as the one in Analysis 1 (17), where it has a pattern
stating that there is a two-place predicate of which the coreferential argument is the first
element (e1) and the predicate the second. This means that the model constructs a gener-
alization that is too broad: this pattern could now in principle also be used to parse and
produce (ungrammatical) utterances like Ed sees for the situation see(Ed,Ed). However,
the model has no grounds of restricting this overgeneralization: there is an incentive to
extract the third subtree (the ‘word’ /shaves/) from a more verb-island like pattern, viz.
its use in the transitive argument-structure construction, where it fits the P -slot. We see
here the effect of the whole system being interconnected by sharing members or parts of
constructions. If it were not for the transitive pattern combining with the word /shaves/ (or
[P : shave /shaves/ ]), the no-reflexive sentences would have probably been analyzed us-
ing a more restrictive pattern like ‘[ [e1 ] [P : shave [ /shaves/ ] ] ] meaning shave(e1, e1)’.

Analysis 1 P (e1, e1)

e1 P

◦ e : Ed

/Ed/

◦ P : shave

/shaves/

= P (e1, e1)

e : Ed

/Ed/

P : shave

/shaves/
Analysis 2 P (e1, Ed)

e1 P

◦ e : Ed

/Ed/

◦ P : shave

/shaves/

= P (e1, Ed)

e : Ed

/Ed/

P : shave

/shaves/
Analysis 3 shave(e1, e2)

e1 e2

◦ e : Ed

/Ed/

◦ e : Ed

/shaves/

= shave(e1, e2)

e : Ed

/Ed/

e : Ed

/shaves/

Figure 17: Three analyses of the no-reflexive sentence type

But apart from Analysis 1, the model also comes up with other analyses. In six simu-
lations, the learner started with a pattern like in Analysis 3, that is, one in which the sound
/shaves/ is paired with a range of entities and there is a pattern that states that if you juxta-
pose two entities, the interpretation is that the first entity shaves the second. After having
seen more utterances, five out of six learners give up on this pattern in favor of Analysis 1,
whereas one keeps using Analysis 2 and Analysis 3 for this sentence type. In one case, the
learner starts with Analysis 2 and shifts to Analysis 1 after a while.

What these cases show, is that the model can acquire both compositional and idiomatic
structures from the data, using one and the same mechanism. It makes overgeneralizations,
which is realistic, and the learners arrive at different representations on the basis of slightly
different inputs, but converge mostly after having seen more evidence.

3.3 Approaching the learner: whither µ-DOP?
Any formalization will leave certain questions unanswered: indeed, the formalization of
a language learner from a constructivist perspective is an AI-complete problem, as not
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only linguistic structure, but also conceptual structure and the memory system will have
to be modeled. Model criticism on these levels is nevertheless very welcome and helps
modelers develop more realistic models. Extending the representational formalism would
be required to be able to understand alternations of the argument structure patterns (e.g.,
passivization and clefting), for instance, but this point does not bear on the essential learn-
ing strategy proposed by DOP, but rather on the nature of the structure in the input. We
will discuss one further criticism in this paragraph that does relate to DOP’s structure dis-
covering mechanism, acknowledging the essential limitations present to the current line of
reasoning.

One central problem with the µ-DOP approach is the fact that it allows for all pos-
sible fragments from the beginning onwards. This means that after having processed its
first experience, the learner already has a (weak) generalization of, say, the subject pre-
ceding the verb. We have seen how the intransitive pattern is directly generalized to its
most abstract form. This direct generalization is obviously unrealistic in the light of early
language being rather holophrase-based. We can expect a learner to go about in a more
conservative manner, only making a schema after it has seen multiple instances of an ut-
terances. Much effort has been spent within the framework of Bayesian learning to un-
derstand how a conservative learner can create patterns that are both restrictive and open-
ended enough to avoid both undergeneralization and overgeneralization (Stolcke 1994,
O’Donnell, Snedeker, Tenenbaum & Goodman 2011), and it is in similar mechanisms that
our understanding of generalization has to be looked at (see also Beekhuizen et al. (2013)).

4 Conclusion
In this paper, we have tried to show the potential of formal models for the constructivist ap-
proach to grammatical structure. We presented a domain-general, meronymy-based learn-
ing mechanism, viz. Data-Oriented Parsing, and show how it can be used as an unsu-
pervised learning mechanism (U-DOP) to address learnability issues using constructivist
principles such as heterogeneity of representation size and redundancy. We further gave an
example of how we can incorporate meaning in U-DOP and showed how such a model can
in principle learn from noisy data, although it remains to be seen how such a model behaves
given naturalistic data. Although the specifics of the presented models may not be viable
(perhaps there are problems with the learning mechanism, perhaps there are cognitively
unrealistic assumptions), they show at least how we can formalize our understanding of
linguistic learners in such a way that we can shed light on known phenomena and perhaps
discover new ones.
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