Errors in word meaning acquisition as explained by semantic typology and computational modeling

Barend Beekhuizen

University of Toronto

UCSB Linguistics colloquium March 10, 2016

Beekhuizen

University of Toronto

Joint work with Afsaneh Fazly and Suzanne Stevenson

Beekhuizen

1 Introduction

- Errors in word meaning acquisition
- Outline of our approach

2 The approach

- Representing word meanings
- Simulating a learner
- Evaluating the model's predictions

Issue 1: Errors in lexical semantic acquisition

- Word meaning acquisition is not flawless
 - Calling all round things *ball*,
 - Mixing up first and second person pronouns,
 - Using one preposition where another would be 'correct'
- Errors display patterns
- Asymmetries!
- Why do children make these errors?

Typology!

Beekhuizen

University of Toronto

Typological Prevalence Hypothesis

- Explanation: cognitive accessibility of a meaning concept.
- Bowerman & Gentner (2009): Typological prevalence reflects cognitive accessibility (simplicity, salience)
 - Many languages will use a particular meaning concept if it is easily accessible
 - Reversed: if a meaning concept is widespread, it must be cognitively accessible (all other things being equal)
- And: low cognitive accessibility leads to errors.
- In particular: overextension of high-accessible meaning concepts to words signifying low-accessible ones.
- Case study: Dutch op 'surface support' overextended to 'tenuous support' situations (expressed with aan)

Our approach

- Use crosslinguistic elicitation data to represent word meaning
- Train a computational word learning model to associate word forms with these representations.
- See if the developmental pattern of the model is similar to that of children
 - If this is indeed due to the representations used, this supports the Typological Prevalence Hypothesis

Introduction

- Errors in word meaning acquisition
- Outline of our approach

2 The approach

- Representing word meanings
- Simulating a learner
- Evaluating the model's predictions

Figure: Dutch divisions of SPACE

Beekhuizen

ndani juu 7772 1 ku chini

Figure: Swahili divisions of SPACE

Beekhuizen

University of Toronto

	Approach 00●00000 000000 000000
Meaning	

Figure: Thai divisions of SPACE

Beekhuizen

University of Toronto

Step 1: gather count matrices

For every language, count number of labels per situation

situation	ор	in	aan	onder	over
cup on table	10				
apple in bowl		10			
coat on hook			10		
ball under chair				10	
tablecloth on table	4				6
cat on mat	10				

Table: Counts of Dutch terms

situation bon ni trong fi

Beekhuizen

Step 2: extract distances between situations

Per language, for every pair of situations, calculate Euclidean distance between counts. Then normalize to $\left[0,1\right]$

	cup	apple	coat	ball	cloth	cat
cup on table	0	1	1	1	0.85	0
apple in bowl		0	1	1	1	1
coat on hook			0	1	1	1
ball under chair				0	1	1
tablecloth on table					0	0.85
cat on mat						0

Table: Distance matrix of situations for Dutch

ı.

...

1 . 1

Bee	kh	uiz	en

Step 3: Global distance matrix

Sum all distance matrices. Then normalize to [0,1] again.

	cup	apple	coat	ball	cloth	cat
cup on table	0	0.97	0.70	0.98	0.22	0.07
apple in bowl		0	0.79	0.97	0.90	0.97
coat on hook			0	0.80	0.60	0.69
ball under chair				0	0.92	0.98
tablecloth on table					0	0.22
cat on mat						0

Table: Distance matrix of situations in 15 languages

Step 4: PCA

Apply PCA to matrix; extract coordinates per situation.

	PC 1	PC 2	PC 3	PC 4	PC 5
cup on table	-0.74	-0.01	-0.12	-0.09	-0.05
apple in bowl	0.88	0.70	-0.19	0	0
coat on hook	0.27	0	0.62	-0.04	0
ball under chair	0.93	-0.68	-0.19	0	0
tablecloth on table	-0.6	0.01	0	0.22	0
cat on mat	-0.74	-0.01	-0.12	-0.10	0.05

Table: Values on 5 principal components for the situations

Step 4: PCA

Apply PCA to matrix; extract coordinates per situation.

Figure: Situations in first two components, with Dutch divisions of SPACE

University of Toron

Learning word meanings

- Every situation is represented as a coordinate in the PCA space.
- Learning a word meaning is learning what subspace of this space should be associated with a word form.
- Note: simplistic vision of meaning purely extensional, no distinction semantics/pragmatics, etc.

	Approach
00	0000000
	00000

Input items

Learning

- Model learns by integrating input items in a Self-Organizing Map
- Input item consists of two parts: word form and the representation of the situation
- Word form: array of zeros with a one for the used label
 E.g. for Dutch: [1,0,0,0,0] for op, [0,1,0,0,0] for in, etc.
- Situation: PCA coordinates of situation
- So: term *op* referring to situation 'cat on mat' is represented as: [1,0,0,0,0,-0.74,-0.01,-0.12,-0.10,0.05]

Learning in SOM

- SOM is a grid of $m \times n$ cells.
- Each cell has the same number of values as input items
- For every input item: find cell that is most similar to input item
- Most similar cell and neighbors are then updated so that they resemble the input item more closely
- Cells start out with random values
- Over time, map comes to reflect categories of learned language
- Cells function as summary representations of input items

Beekhuizen

Where do input items come from?

- Children hear words with varying frequencies
- So, training data should reflect that
- At every turn, the model integrates a sampled input item (term-situation pair) into the SOM:
 - Sample term t with probability P(t): the relative frequency of t in a corpus
 - Sample situation s given a term t with a probability P(s|t) as observed in the elicitation data
- Possibility of controlling for frequency effects! Setting P(t) to a uniform distribution does that.

Testing the model: situations without terms

- Give model a situation without term and ask it to predict the label
- 'cat on mat': $[\cdot, \cdot, \cdot, \cdot, -0.74, -0.01, -0.12, -0.10, 0.05]$
- Again, find most similar cell for input item (only using PCA features)
- Then: read off the term values for that cell
- **E**.g.: [0.62, 0.07, 0.28, 0.02, 0.01]
- So: op has a probability of 0.62, in of 0.07, etc.

Evaluation 1: Convergence with adult behavior

- Sanity check: does model end up behaving like adult language users?
- For all situations, predict most-likely term on basis of situation
- See how often predicted term is the same as the term most adult language users use

Evaluation

Evaluation 2: Matching developmental pattern

Few data points in observed data, many in model predictions

(a) Observed

(b) Predicted (avg. distribution over 30 simulations)

Beekhuizen

Aligning observed and predicted test moments

- Dynamic Time Warping: Contiguous series of bins of predicted test moments
- Bin is summary over all simulations in certain time interval
- Find bins maximizing similarity for all situations: global score of goodness of prediction

Figure: A possible alignment between predicted and observed data

Beekhuizen

Evaluation

Recap: modeling error patterns

- Obtain semantic representations with PCA over cross-linguistic data,
- Train a category learning model (Self-Organizing Map) on pairs of a word and a semantic representation,
- Evaluate match with (1) adult production, (2) observed developmental path.