Learning relational meanings from situated caregiver-child interaction
A computational approach

Barend Beekhuizen1, Afsaneh Fazly2, Aida Nematzadeh2 & Suzanne Stevenston2

1Leiden University 2University of Toronto

ICLC, 25 June 2013
Introduction

Topic
Cognitive models of acquiring word-meaning mappings

Goals
1. **methodological issues**: Discuss sources of semantic data for models and present a new one
2. **providing a baseline**: Explore the behavior of a basic word-learning model on this data
3. **extending the model**: Show how we can add ‘modules’ to the model
Cross-situational learning \rightarrow computational models

Input: utterances and situations (source: synthetic or video)
Goal #1

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.
Goal #1

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

- 32 dyads (child 16mo, ± 5 min. each) playing game.
- 175 minutes of material, 7842 word tokens, 2492 utterances.

Situational coding. For every interval of 3 seconds, code:
- simple behavior (grab, move, position, letgo),
- changes in spatial relations (in, on, out, off, match),
- objects (block, bucket, mother, table)
- properties (triangular, square, red, blue)
- Cross-situational learning → computational models
- Input: utterances and situations (source: synthetic or video)

Goal #1

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

- 32 dyads (child 16mo, ± 5 min. each) playing game.
- 175 minutes of material, 7842 word tokens, 2492 utterances.
- Situational coding. For every interval of 3 seconds, code:
 - simple behavior (grab, move, position, letgo),
 - changes in spatial relations (in, on, out, off, match),
 - objects (block, bucket, mother, table)
 - properties (triangular, square, red, blue)

- **Structured**: grab(mother, (red, square, block))
- **High intra- & interannotator agreement** (almost all $\kappa > 0.8$)
Example

<table>
<thead>
<tr>
<th>time</th>
<th>type</th>
<th>coding/transcription</th>
</tr>
</thead>
<tbody>
<tr>
<td>0m0s</td>
<td>situation</td>
<td>een. nou jij een.</td>
</tr>
<tr>
<td></td>
<td>language</td>
<td>“One. Now you try one.”</td>
</tr>
<tr>
<td></td>
<td>translation</td>
<td></td>
</tr>
<tr>
<td>0m3s</td>
<td>situation</td>
<td>position(mother, toy, on(toy, floor)) grab(child, b-ye-tr) move(child, b-ye-tr, on(b-ye-tr, floor), near(b-ye-tr, ho-ro)), mismatch(b-ye-tr, ho-ro)</td>
</tr>
<tr>
<td></td>
<td>language</td>
<td>nee daar.</td>
</tr>
<tr>
<td></td>
<td>translation</td>
<td>“No, there.”</td>
</tr>
<tr>
<td>0m6s</td>
<td>situation</td>
<td>point(mother, ho-tr, child) position(child, b-ye-tr, near(b-ye-tr, ho-ro)), mismatch(b-ye-tr, ho-ro)</td>
</tr>
<tr>
<td></td>
<td>language</td>
<td>nee lieverd hier past ie niet.</td>
</tr>
<tr>
<td></td>
<td>translation</td>
<td>“No sweetie, it won’t fit in here.”</td>
</tr>
</tbody>
</table>
Acquiring lexical meaning

Goal #2

Setting a baseline: how well does a word-learning model like Fazly et al. 2010 (FAS10) perform on this data?
Goal #2

Setting a baseline: how well does a word-learning model like Fazly et al. 2010 (FAS10) perform on this data?

- FAS10: incremental model of aligning words in utterance
 \[U = \{w_1, \ldots, w_n\} \text{ with features in situation } S = \{f_1, \ldots, f_n\} \]
Acquiring lexical meaning

Goal #2
Setting a baseline: how well does a word-learning model like Fazly et al. 2010 (FAS10) perform on this data?

- FAS10: incremental model of aligning words in utterance
 \(U = \{w_1, \ldots, w_n\} \) with features in situation \(S = \{f_1, \ldots, f_n\} \)
- Data preparation
 - Representations are structured, so flatten them:
 \(\text{grab(mother, (red, square, block))} \rightarrow \{\text{grab, mother, red, square, block}\} \)
 - Take the set of all flattened representations of the situations occurring in the interval in which the utterance was produced.
 - We used lemma representations for the words
Baseline experiment: evaluation

- **No golden lexicon**, so hand-built one for ‘meaningful’ words ($n = 41$):
 - Object labels: *blok* meaning *block*
 - Properties: *rood* meaning *red*
 - Spatial relations: *op* meaning *on*
 - Actions: *passen* meaning *match*, *stoppen* meaning \{*move, in*\}
Baseline experiment: evaluation

- No golden lexicon, so hand-built one for ‘meaningful’ words ($n = 41$):
 - Object labels: blok meaning block
 - Properties: rood meaning red
 - Spatial relations: op meaning on
 - Actions: passen meaning match, stoppen meaning \{move, in\}
- Two (partially complementary) measures:
 - Summed Conditional Probability (SCP): how much probability mass is assigned to the true meanings given a word?
 - Average Precision (AP): how are the true meanings ranked (on conditional probability) w.r.t. the other meanings.
Results

- **SCP** not very peaky
- **AP** (ranking): good for properties, rather bad for other classes.
- No model dependence.
Results

- **SCP** not very peaky
- **AP** (ranking): good for properties, rather bad for other classes.
- No model dependence.
- Relational meanings hard to glean from situation alone. Why?
 1. True meaning absent from S
 2. Foil features structurally present in S
 3. True meaning also present in many other Ss
- In general: situations look a lot like each other, unlike ‘synthesized’ semantics (cf. Matusevych et al. 2013)
Goal #3

Exploring known biases/mechanisms

<table>
<thead>
<tr>
<th>added bias/mechanism</th>
<th>prop.</th>
<th>object</th>
<th>spatial</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTENTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>increasing temporal scope</td>
<td>=</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>attention to own behavior</td>
<td>=</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>attention to mother’s behavior</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>=</td>
</tr>
<tr>
<td>ATTENTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>only take novel features</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>more weight to novel features</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>more weight to rarer features</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>more weight to expected features</td>
<td>↑</td>
<td>↑↓</td>
<td>↑↓</td>
<td>=</td>
</tr>
<tr>
<td>LINGUISTIC STRUCTURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>using parts of speech</td>
<td>=</td>
<td>↓</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Mintz’ frequent frames</td>
<td>↓</td>
<td>↓</td>
<td>=</td>
<td>↑</td>
</tr>
</tbody>
</table>
1 Data issues for word learning models

- problems with synthesizing methods and typical video-based approaches
- creation of a situational corpus
1. Data issues for word learning models
 - problems with synthesizing methods and typical video-based approaches
 - creation of a situational corpus
2. Setting a baseline using FAS10
 - properties > object labels > spatial & behavioral meaning
 - other methods underestimate noise & uncertainty in actual data
1. **Data issues for word learning models**
 - problems with synthesizing methods and typical video-based approaches
 - creation of a situational corpus

2. **Setting a baseline using FAS10**
 - properties > object labels > spatial & behavioral meaning
 - other methods underestimate noise & uncertainty in actual data

3. **Exploring other mechanisms**
 - method to evaluate their contribution
 - what works:
 - attention to rare events,
 - increasing temporal scope,
 - adding words from previous utterances
 - other mechanisms are mixed: e.g. good for verbs, bad for rest
Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$ \hspace{1cm} (1)
Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$ \hspace{1cm} (1)

Updating the association score (initialized at 0):

$$assoc^{(t)}(w, f) = assoc^{(t-1)}(w, f) + a(w|f, U^{(t)}, S^{(t)})$$ \hspace{1cm} (2)
Calculating alignment on the basis of conditional probabilities:

\[
a(w|f, U(t), S(t)) = \frac{p^{(t-1)}(f|w)}{\sum_{w' \in U(t)} p^{(t-1)}(f|w')}
\] (1)

Updating the association score (initialized at 0):

\[
\text{assoc}^{(t)}(w, f) = \text{assoc}^{(t-1)}(w, f) + a(w|f, U(t), S(t))
\] (2)

Recalculating the conditional probabilities:

\[
p^{(t)}(f|w) = \frac{\text{assoc}^{(t)}(w, f) + \lambda}{\sum_{f' \in F} \text{assoc}^{(t)}(w, f') + \beta \times \lambda}
\] (3)