Learning relational meanings from situated caregiver-child interaction A computational approach

Barend Beekhuizen¹, Afsaneh Fazly², Aida Nematzadeh² & Suzanne Stevenston²

¹Leiden University ²University of Toronto

13 November 2012

The problem of learning relational meaning

- Learning word meaning
- Relational meaning
- Our approach
- 2 A computational approach
 - Fazly, Alishahi & Stevenson (2010)
 - Data

3 Bootstraps and biases

- Addressing the 'missing meaning' problem
- Addressing the 'missing words' problem
- Addressing the 'too much meaning' problem
- Other possible bootstraps
- An overview: what helps, what doesn't
- Whither?

Learning word meaning Relational meaning Our approach

Learning word meaning

- Suppose you can segment utterances into words
- & suppose you understand that others have communicative intentions when they use language
- & suppose you can partially understand these communicative intentions without understanding language
- ... can you learn the mappings between words and the objects and situations they refer to?

(日) (同) (三) (三)

Learning word meaning Relational meaning Our approach

Relational meaning

- People typically think of object-referential meaning when they talk about meaning ('ball' and 'dog' and 'chair')
- What about reference to relations between objects (relational meanings)?
- E.g., 'being-underneath'; 'exerting force upon'; 'moving w.r.t.'; 'having a similar shape'
- Verbs, prepositions, relational nouns,

Learning word meaning Relational meaning Our approach

Why is it hard?

- Words with relational meaning (RM) are thought to be hard to learn
- Why?¹
 - Stability of RM: not stable over time (as opposed to objects)
 - Quantity of RM and hypothesis space: many relations holding between objects (objects: more limited)
 - Perceptibility of RM (beliefs, attitudes, perception)

¹Gentner (1978) 'On relational meaning: The acquisition of verb meaning'. *Child Development* **49**:988–998 Gleitman (1990): 'Sources of verb meanings'. *Language Acquisition* 1: 3–55 <

Learning word meaning Relational meaning Our approach

Proposed solutions

- Syntactic bootstrapping²
- Constraints (in particular: mutual exclusivity)³
- Socio-pragmatic bootstrapping⁴
- All of the above ⁵

²Gleitman (1990)

³Markman, E. M. (1994). 'Constraints on word meaning in early language acquisition'. *Lingua*, **92**, 199227.

⁴Behrend, D. A., & J. Scofeld (2006). 'Verbs, Actions, and Intentions'. In: K. Hirsh-Pasek & R. M. Golinkoff (eds.). Action Meets Word. How Children Learn Verbs, p. 286–307

⁵Poulin-Dubois, D., & J. N. Forbes (2006). 'Word, Intention, and Action: A Two-Tiered Model of Action Word Learning'. In K. Hirsh-Pasek & R. M. Golinkoff (eds.), *Action Meets Word. How Children Learn* Verbs, p. 262–285

Learning word meaning Relational meaning Our approach

Revisiting the claims

- Before trying to solve the problem: estimate its magnitude (hasn't been done since Gleitman (1990), though there is a rising interest in observational data).⁶
- Get a more detailed picture of the problems.
- Then: using computational modeling techniques to test some of the hypothesized solutions

⁶Frank, M.C., N.D. Goodman & J.B. Tenenbaum (2008). 'A Bayesian Framework for Cross-Situational Word-Learning'. Advances in Neural Information Processing Systems, **20**, 18 Medina, T. N., J. Snedeker, J.C. Trueswell & L.R. Gleitman (2011). 'How words can and cannot be learned by observation'. Proceedings of the National Academy of Sciences of the United States of America=**108**, 9014–9

Learning word meaning Relational meaning Our approach

< □ > < 同 >

A B > A B >

The issue of the data

- Lots of work in experimental settings: problems with ecological validity
- Esp.: underestimation of hypothesis space, noisiness (Medina et al. 2011)
- So: we look at observational data of less constrained caregiver-child interaction

Learning word meaning Relational meaning Our approach

The pegs and holes game

- Dyads of mothers and daughters (16 mo) playing games of putting pegs in holes
- Mothers instructing children verbally (in Dutch)
- 32 dyads, approximately 5 minutes each: 157 minutes in total

Figure: The toy and the twelve blocks

< 17 >

Learning word meaning Relational meaning Our approach

I ≡ ▶ < </p>

The pegs and holes game

- Getting information from the video's:
 - Two coders coded behavior, spatial states and involved objects according to a coding schema
 - Within 3-second intervals
 - Format: predicate-argument structures, e.g., grab(mother, yellow-square-block)
 - With good inter- and intra-coder agreement (most $\kappa > 0.8$)
 - I transcribed all speech

Learning word meaning Relational meaning Our approach

The pegs and holes game

- Getting information from the video's:
 - Two coders coded behavior, spatial states and involved objects according to a coding schema
 - Within 3-second intervals
 - Format: predicate-argument structures, e.g., grab(mother, yellow-square-block)
 - With good inter- and intra-coder agreement (most $\kappa > 0.8$)
 - I transcribed all speech
- Resulting corpus:
 - 157 minutes of behavior-coded and speech-transcribed material

• □ > • □ > • □ > • □ > •

- 2492 utterances, 7842 word tokens (480 types, 355 lemmas)
- 8464 behavioral predicates
- Other information: fit of block and hole.

Learning word meaning Relational meaning Our approach

Words and things

- Expressing words in coded meaning:
 - pakken 'to grab' means grab
 - stoppen 'to put (sth. into sth.)' means {move, in}
 - geel 'yellow' means yellow
 - op 'on' means on
- Using these representations, we can check if the (correct) feature occurs in interval of utterance.
- Also: if word occurs when the feature is present
- Using these descriptive statistics, we encounter three problems for the learner.

< A >

I ≡ →

Learning word meaning Relational meaning Our approach

Problem 1: missing meaning

- Meaning is not present in situational context of word:
 - utterance: You go grab the block! situation: grabbing takes place 7 seconds later.
 - utterance: *Hey, don't take the lid off!* situation: child is pulling at the lid, but doesn't succeed in taking it off
- Calculate percentage of utterances containing a word in which the correct feature is present.
- E.g.: pakken 'to grab': in 58% of cases is grab present
- Globally (proportions): words for colors/shapes (0.75) > verbs (0.59), object nouns (0.57) and spatial terms (0.53)

・ロト ・同ト ・ヨト ・ヨト

Learning word meaning Relational meaning Our approach

Problem 2: missing words

- Word expressing an aspect of the situational context is not present in the utterance:
 - utterance: Good girl! situation: child puts block in bucket
 - utterance: Now it's off! situation: child grabs lid and moves it off of the bucket
- Calculate how often word is used when meaning is present.
- This problem is huge: meaning will be associated with lots of other words
- Spatial states (0.06) > verbs (0.02) > objects (0.009), colors/shapes (0.008)
- (Problem seems bigger for non-relational meaning than for relational meaning)

★ Ξ →

Learning word meaning Relational meaning Our approach

Problem 3: too much meaning

- Irrelevant features co-occur often with word:
 - utterance: That sure will fit there situation: child is fitting block in right hole, but other relations are there too: child positioning the block, block being near to the hole, child holding the block etc.
- Partially due to nature of the data: restricted nature of agents (child & mother), patients (blocks, lid) and locations (bucket, hole, floor).

Learning word meaning Relational meaning Our approach

Three problems

- Amount of referential uncertainty, feature non-independence and noise seems bigger than in lab settings and semantic datasets built from child-directed language (with synthetic meaning).
- So, how would a computational learner behave facing this data?
- What known mechanisms can help the learner reduce the problems

- Starting point: model of Fazly, Alishahi & Stevenson (2010); FAS⁷
- Assume that the input consists of a situation S and an utterance U
- Let S be a set of features $f_1 \dots f_n$ present in the situational context
- Let U be a set of words $w_1 \ldots w_n$
- Goal: finding alignments between words and features

⁽Fazly, A., A. Alishahi & S.Stevenson, (2010). 'A probabilistic computational model of cross-situational word learning'. Cognitive science, **34**, 1017–1063.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Aligning words and features
 - Use learned conditional probabilities to calculate alignment:
 - $a(w|f, U, S) = \frac{p(f|w)}{\sum_{w' \in U} p(f|w')}$
 - Normalizing over words: mutual exclusivity effect

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Aligning words and features
 - Use learned conditional probabilities to calculate alignment:
 - $a(w|f, U, S) = \frac{p(f|w)}{\sum_{w' \in U} p(f|w')}$
 - Normalizing over words: mutual exclusivity effect
- Updating word-feature associations
 - Word-feature association assoc(w, f) can be thought of as alignment-weighted co-occurrence counts
 - $assoc(w, f)^{t} = assoc(w, f)^{t-1} + a(w|f, U, S)$

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Aligning words and features
 - Use learned conditional probabilities to calculate alignment:

•
$$a(w|f, U, S) = \frac{p(f|w)}{\sum_{w' \in U} p(f|w')}$$

- Normalizing over words: mutual exclusivity effect
- Updating word-feature associations
 - Word-feature association assoc(w, f) can be thought of as alignment-weighted co-occurrence counts
 - $assoc(w, f)^{t} = assoc(w, f)^{t-1} + a(w|f, U, S)$
- Re-calculating p(f|w) on the basis of assoc(w, f)
 - Adding smoothing constants for unseen meanings (where F is the set of all seen features)

•
$$p(f|w) = \frac{assoc(w,f) + \lambda}{\sum_{f' \in F} assoc(w,f') + \beta \times \lambda}$$

Fazly, Alishahi & Stevenson (2010) Data

The data

- What is our input data?
- U is all lemmas in one utterance, e.g. (doen, daar, maar, in)
- *S* is the set of features present in the interval in which *U* is found.
- How to get features from our predicate-argument structures?
 - move(mother,yellow-square-block,in(bucket),on(table))
 - becomes:

 $\{\texttt{move,mother,yellow,square,block,bucket,table,in,on}\}$

• So an input pair could be:

utterance doen daar maar in (do there PRT in) situation {reach,position,floor,on,to,ch,grab,li}

- 4 同 ト 4 ヨ ト 4 ヨ ト

Experiments on PAH-game: what do we evaluate

- Words with no clear meaning in our representation (auxiliaries, determiners, many adverbs): don't evaluate
- 55 lemmas that can be considered meaningful
- Manually annotated for the correct features
- Four types:
 - color and shape terms: $\mathit{rood}
 ightarrow \mathtt{red}, \mathit{driehoek}
 ightarrow \mathtt{triangular}$
 - object labels: $\mathit{blok} \to \mathtt{block}$
 - spatial terms: $op \rightarrow \texttt{on}, open \rightarrow \{\texttt{lid}, \texttt{off}, \texttt{bucket}\}$
 - verbs $halen \rightarrow \{\texttt{move,out}\}, \ passen \rightarrow \texttt{fit}$
- We evaluate how well the learned p(f|w) at the end fits this 'golden' lexicon

イロト イポト イヨト イヨト

Experiments on PAH-game: how do we evaluate

- Two measures, each highlighting a different aspect of the results
- SumProb Summed probability: $\sum_{f \in \text{golden}_representation(w)} p(f|w)$
- AvePrec Average precision: rank the features by p(f|w), then $AvePrec = \sum_{k=1}^{n} P(k)\Delta r(k)$
 - where
 - k is the rank
 - *P*(*k*) is the number of golden-representation features found up to *k*, divided by *k*.
 - Δr(k) is the change in recall between k 1 and k (i.e. 1 if a new golden-representation features is found, 0 otherwise).

Fazly, Alishahi & Stevenson (2010) Data

(日) (同) (三) (三)

Experiments on PAH-game: results

- SP = Summed Probability
- AP = Average Precision

	color/	shape	object		spatial		verbs		total SP AP	
	SP	AP	SP	AP	SP	AP	SP	AP	SP	AP
basic	0.13	0.70	0.05	0.24	0.13	0.25	0.07	0.16	0.09	0.30

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

The 'missing meaning' problem: windowing

- Suppose the feature is not present at the time of *U*, but some seconds later . . .
- Let the learner pay attention to all intervals between previous and next utterance (flex)
- Or within a fixed window of intervals (e.g. current interval, up to two later; fix)
- So: bigger window of situations covered per utterance
- Sort of socio-pragmatic bootstrapping

model	odel color/shape		object		spatial		verbs		total	
flex	0.10	0.79	0.06	0.23	0.10	0.37	0.08	0.17	0.08	0.30 0.34 0.37

Beekhuizen, Fazly, Nematzadeh & Stevenson

Learning relational meanings

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

The 'missing meaning' problem: adding intentions

- Suppose learners pay attention not only to the current situation, but also what they infer to be the goal of the behavior
- Goals are game states (in(bucket,block), off(lid,bucket), etc.)
- Goals are inferred using an incrementally trained Naive Bayes Classifier on the basis of the features at t 1.
- Sort of socio-pragmatic bootstrapping

basic 0.13 0.70 0.05 0.24 0.13 0.25 0.07 0.16 0.09 0.30 goals 0.11 0.69 0.06 0.29 0.12 0.23 0.07 0.14 0.08 0.31	model	el color/shape		object		spatial		verbs		total	
goals 0.11 0.69 0.06 0.29 0.12 0.23 0.07 0.14 0.08 0.31	basic	0.13	0.70	0.05	0.24	0.13	0.25	0.07	0.16	0.09	0.30
	goals	0.11	0.69	0.06	0.29	0.12	0.23	0.07	0.14	0.08	0.31

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

The 'missing words' problem: adding ghost words

- Suppose some feature is already strongly aligned with a word in the lexicon but not in the utterance
- We can use the strong alignment with that ghost word to make the alignments with the words in the utterance smaller
- Adds a global, probabilistic mutual exclusivity effect
- Let GW be the set of all words seen

•
$$a(w|f, U, S) = \frac{p(f|w)}{\sum_{w' \in U} p(f|w') + \sum_{gw \in GW \land gw \notin U} p(f|gw)}$$

model color/shape		object		spa	tial	ve	rbs	total		
basic	0.13	0.70	0.05	0.24	0.13	0.25	0.07	0.16	0.09	0.30 0.32
GVV	0.20	0.73	0.07	0.20	0.13	0.20	0.07	0.17	0.10	0.32

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

The 'too much meaning' problem: weighting by novelty

- Suppose out of all meanings, only some are salient because they're new
- Let's give the new features a high weight and the old ones a low weight
- $assoc(w, f)^t = assoc(w, f)^{t-1} + a(f|w, U, S) \times novelty(f)$
- Let the novel features be a factor N as likely as old ones,
- $novelty(f) = \frac{1}{N \times |novel_features| + |old_features|}$ if $f \in old_features$ $novelty(f) = \frac{N}{N \times |novel_features| + |old_features|}$ if $f \in novel_features$

model	color/	shape	obj	ect	spa	tial	vei	rbs	to	tal
basic $N = 5$ $N = 20$	0.13	0.70	0.05	0.24	0.13	0.25	0.07	0.16	0.09	0.30
N = 5	0.08	0.30	0.06	0.22	0.15	0.27	0.09	0.21	0.09	0.24
<i>N</i> = 20	0.05	0.19	0.07	0.20	0.15	0.28	0.10	0.25	0.09	0.22

Beekhuizen, Fazly, Nematzadeh & Stevenson

Learning relational meanings

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

(日)

The 'too much meaning' problem: weighting by frequency

- Suppose attention is distributed over all features on the basis of how frequent they are
- The less frequent, the more salient and vice versa
- $assoc(w, f)^{t} = assoc(w, f)^{t-1} + a(w|f, U, S) \times unexpectedness(f)$
- unexpectedness(f) = $\frac{\frac{1}{n(f)}}{\sum_{f' \in S} \frac{1}{n(f')}}$
- where n(f) is the frequency of f in all S up to time t.

model	model color/shape		object		spatial		verbs		total	
basic freq	0.13	0.70	0.05	0.24	0.13	0.25	0.07	0.16	0.09	0.30
freq	0.32	0.68	0.08	0.25	0.14	0.31	0.14	0.23	0.15	0.33

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

The 'too much meaning' problem: leaving agents out

- The pragmatic situation is very limited
- Therefore the agents child and mother are not salient as they are always present and coincide with the speaker and hearer
- And hence become associated with a lot of words
- Leave them out
- Sort of socio-pragmatic bootstrapping

model color/shape		object		spatial		verbs		total		
basic	0.13	0.70	0.05	0.24	0.13	0.25	0.07	0.16	0.09	0.30
basic no agt	0.16	0.73	0.06	0.26	0.16	0.26	0.08	0.18	0.10	0.32

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

Using distributional information

- Suppose the learner uses the emergent distributional information of words
- Frames: word to the left and to the right of w^8
- Keep track of an alternative 'lexicon' of frames and use that in alignment
 - "go __ it" will hopefully be associated with verb-like meanings
- Sort of syntactic bootstrapping

•
$$a(w|f, fr, U, S) = \frac{p(f|w) + p(f|fr)}{\sum_{w' \in U, fr' = fr(w')} p(f|w') + p(f|fr')}$$

model	model color/shape		object		spatial		verbs		total	
basic frames	0.13 0.10	0.70 0.70	0.05 0.05	0.24 0.23	0.13	0.25 0.26	0.07	0.16 0.17	0.09 0.08	0.30 0.30

⁸Mintz, T. H., E.L Newport & T.G. Bever (2002). 'The distributional structure of grammatical categories in speech to young children'. *Cognitive Science* **26**, 393–424 $\langle \Box \rangle \langle \Box \rangle \langle$

Beekhuizen, Fazly, Nematzadeh & Stevenson

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

< □ > < 同 >

< ∃ >

An overview: what helps, what doesn't

- Model does not learn that well from the data
- It is to be seen if other models do: problem seems inherent in the data
- But also tells us something about the task the learner faces
- Main (global) positive effects:
 - a wider window into the future (0 : 2 seems to work best)
 - weighting by inverse frequency
 - adding ghost words
 - leaving agents out

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

(日)

An overview: what helps, what doesn't

model color/shape		object		spatial		verbs		total		
basic	0.13	0.70	0.05	0.24	0.13	0.25	0.07	0.16	0.09	0.30
basic 4-best	0.22	0.77	0.09	0.28	0.23	0.41	0.17	0.24	0.16	0.38

- Only slightly better in Average Precisions than the windowing approach (0.37 vs. 0.38)
- But much better in Summed Probability (0.08 vs. 0.16)

The problem of learning relational meaning A computational approach Bootstraps and biases Addressing the 'missing words' problem Addressing the 'missing words' problem Addressing the 'missing words' problem Addressing the 'missing meaning' problem Other possible bootstraps

Whither?

- We can get some improvement using low-level cues:
 - SumProb from 0.09 to 0.16
 - AvePrec from 0.30 to 0.38
- Continuing search for other cues (prosody?)
- Also general conclusion: the 'cross-situationality' of this data is limited
- But perhaps also: aligning single words with features might not be realistic
 - ga @m d@r m@ in doen go it there PRT in do.INF 'go put it in there'
 - has a fixed part, recurring over tens of utterances
 - Variable are: *in doen* (put in), *in stoppen* (put in) *uit halen* (take out), *op zetten* (put on).
 - Can this information somehow be exploited?

Addressing the 'missing meaning' problem Addressing the 'missing words' problem Addressing the 'too much meaning' problem Other possible bootstraps An overview: what helps, what doesn't Whither?

(日) (同) (三) (三)

Thank you!