

Goal: Qualitative 3D from a single image

Output (piecewise surface labeling)

Convex

Concave

Cylindrical

Approach

Learn a mapping from images to qualitative surface shape

Motivation

Execution

Train a Conditional Random Field (CRF) to recover piecewise labeling from image superpixel graph, based on (2d,3d) training set

1. Superpixel graph

Over-segment the image using Normalized Cuts Each superpixel

becomes node in graph Neighboring superpixels (those with common boundary) share an edge

2. Feature Design

36 dimensional vector (*F*_i) encodes both contour and internal superpixel appearance information

triangular the

set

matrix as feature

3. CRF formulation

- *X* set of superpixel labels
- x_i label for superpixel *i*
- F_i feature vector for superpixel i (after the kernelization)
- K number of possible labels (8 for HK encoding)
- S number of
- superpixels

 $p(X \mid F, w, v) = \frac{1}{Z(w, v)} \exp\left\{\sum_{i} w_i^T F_i + \sum_{i} v(i, j)\right\}$

- **CRF** parameters:
- w KxS matrix of coefficients
- v KxK symmetric matrix of binary potentials (label compatibilities)

Qualitative 3D Surface Reconstruction From Images

Alex Levinshtein¹, Cristian Sminchisescu² and Sven Dickinson¹, ¹University of Toronto, ²University of Bonn

 A mid-level object description • Generic: coarser than exact reconstruction, not object specific, however • Useful for indexing, even if sparse • Useful for categorical recognition

Overview of the Method

1. Construct superpixel graph

- Oversegment the image
- Construct a graph were segments are nodes and edges are neighborhood relations between nodes

2. Extract features

3. Train CRF

 Find the maximum likelihood parameters of the CRF

3a. Bethe Free Energy Approximations for CRF

- Use Conditional Maximum likelihood learning Compute log-likelihood of the data under the model
- \succ Use Bethe Free Energy to approximate log Z $\log Z = -F_{\beta}$
- $F_{\beta} = -\sum_{ij} \sum_{x_i, x_j} b_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j) \sum_{i} \sum_{x_j} b_i(x_i) \log \psi_i(x_i)$ $+\sum \sum b_{ij}(x_i, x_j) \log b_{ij}(x_i, x_j) - \sum (q_i - 1) \sum b_i(x_i) \log b_i(x_i)$ $i \quad x_i, x_i$
- Compute gradients of log likelihood \rightarrow Derivative of the partition function involves intractable expectation >Use loopy belief propagation to approximate necessary marginals

Qualitative 3D from an image

- Each superpixel *i* is associated feature vector F_i
- Features capture Contour strength and curvature > Moments of intensity inside superpixel, local jets, etc

Use standard optimization package to finding optimal parameters, w and v

Minolta K2T

universität**bonn**

Qualitative Surface Labels

 Inspired by Besl and Jain's (PAMI 1988) representation previously used for segmentation of 3d range data

 k_1 and k_2 are the surface (local) principal curvatures:

$$H = \frac{k_1 + k_2}{2}, \quad K = k_1 \cdot k_2$$

Use Loopy Belief propagation for inference

- At every iteration update messages in parallel
 - $\mu_{new} = (1 \alpha)\mu_{new} + \alpha\mu_{old}$

Test on two datasets (Minolta and K2T) containing pairs of optical and

ige	ground truth	Inferred labels

Train	Test
0.6	0.48
0.48	0.32

Precision on 6-label problem (all saddles merged into one class)