Symbolic Exploration

Azadeh Farzan
CS410 - Fall 2019
Reachability

One of the *simplest* verification problems:

- Given a *set of bad states*, can a program/system *reach* one of these states during its execution?
- It is a *decision problem*.
Propose a trivial algorithm for reachability...
State Space Exploration

A program with 100 Boolean variables can have up to 2^{100} different reachable states.

Representing these individually is not feasible.

Symbolic representation accommodates representing sets of states more compactly.

\[\begin{align*}
\text{p, q, r:} & \quad \begin{array}{c}
\text{p} \\
\hline
\text{q states}
\end{array} & \quad \begin{array}{c}
q \land \lnot r \\
\hline
\text{2 states}
\end{array}
\end{align*} \]
Formally ...

A boolean formula F represents the set of all states s where $s \models F$

$\text{states}(F) = \{ s \mid s \models F \}$
How do we solve reachability symbolically?
First Attempt

\[R_0 = I \quad \rightarrow \quad \text{set of initial states} \]

\[R_1 (\vec{v}) = [R_0 (\vec{v'}) \land \text{step}(\vec{v'}, \vec{v})] \lor R_0 (\vec{v}) \]

reachable by one step from \(R_0 \)

union \(R_0 \)

\[R_2 (\vec{v}) = [R_1 (\vec{v'}) \land \text{step}(\vec{v'}, \vec{v})] \lor R_1 (\vec{v}) \]

\[\vdots \]
Let $E(\mathcal{U})$ represent all error states.

At each step j, if $R_j(\mathcal{V}) \land E(\mathcal{U})$ is satisfiable, then an error state is reachable.
If the system is finite-state then

\[\exists j : R_j = R_{j+1} \]

We either find a \(j \) s.t. \(R_j \notin \mathcal{E} \) is satisfiable or a \(j \) s.t. \(R_j = R_{j+1} \).
Let's make this better!
Property-Directed Reachability
A Slight Perspective Shift
Setup

- **Clause**: disjunction of literals
- **Cube**: conjunction of literals
- Each frame R_j is a **CNF** formula.
- But now, it is an over-approximation of the set of reachable states in j steps.
Invariants

- \(R_0 = I \)
- \(R_j \subseteq R_{j+1} \)
- \(\text{CL}(R_{j+1}) \subseteq \text{CL}(R_j) \) \((j > 0) \)
- \(T(R_j) \subseteq R_{j+1} \) \(\implies T: \text{step} \)
- \(R_j \subseteq \neg E \) \(\implies \text{except the last frame } N \)
set of states represented by c

$\text{CAR}_{\text{R\text{N\text{A}\text{T}}}}$

not SAT

every state visited in a step after R_n
RNAT

$\overline{7C_2AR\text{RNAT}}$
not SAT

$\overline{7C_3\text{RNAT}}$
not SAT
$c \land c_2 \land c_3 \rightarrow $ the CNF formula for RnAT

guaranteed to include $(\text{RnAT})_v\text{Rn}$
The Algorithm

Check if $R_n \land E$ is SAT.

- No? $R_n \land \neg E$
 - new empty frame R_{n+1}
 - $\forall j > 0$, push clauses from R_j to R_{j+1}
 - clause $c \in CL(R_j)$ can be pushed if $R_j \land \neg \neg c$ is not SAT.
 - Terminate if two equal frames found
• Is s truly reachable?
• Can it be reached from R_{N-1}?
\[R_{N-1} \rightarrow \text{AT AS S is SAT?} \]

• S is a cube \(\Rightarrow \) S is a clause
R_{n-1} has to be made more precise!

$R_{n-1} \land T \land \exists s$ is SAT?

- s is a satisfiable assignment.
- Try blocking s from R_{n-1}!
The Algorithm

- **Check if** $R_n \land E$ **is SAT.**

 - **Yes?** → careful: R_n was overshooting!
 - There is a satisfying assignment S.
 - **Check if** $R_{n-1} \land \neg \neg S$ **is SAT**
 - **No?** Add S to R_n and start over
 - **Yes?** get assignment t
 repeat step (**) with (R_{n-2}, t)
If we keep trying to block in earlier frames and reach the first frame, then the error is truly reachable.