
CS 486/686 Assignment 4 (90 marks)

Alice Gao

Due Date: 11:59 PM ET on Thursday, August 5, 2021 with an extension
with no penalty to 11:59 pm ET on Wednesday, August 11, 2021

1



CS 486/686 Spring 2021 Assignment 4

Academic Integrity Statement

If your written submission on Learn does not include this academic integrity statement with
your signature (typed name), we will deduct 5 marks from your final assignment mark.

I declare the following statements to be true:

• The work I submit here is entirely my own.

• I have not shared and will not share any of my code with anyone at any point.

• I have not posted and will not post my code on any public or private forum or website.

• I have not discussed and will not discuss the contents of this assessment with anyone
at any point.

• I have not posted and will not post the contents of this assessment and its solutions
on any public or private forum or website.

• I will not search for assessment solutions online.

• I am aware that misconduct related to assessments can result in significant penalties,
possibly including failure in the course and suspension. This is covered in Policy 71:
https://uwaterloo.ca/secretariat/policies-procedures-guidelines/policy-71.

Failure to accept the integrity policy will result in your assignment not being graded.

By typing or writing my full legal name below, I confirm that I have read and understood
the academic integrity statement above.

©Alice Gao 2021 v1.0 Page 2 of 12



CS 486/686 Spring 2021 Assignment 4

Instructions

• Submit the assignment in the A4 Dropbox on Learn. No late assignment will be
accepted. This assignment is to be done individually.

• I strongly encourage you to complete your write-up in Latex, using this source file.
If you do, in your submission, please replace the author with your name and student
number. Please also remove the due date, the Instructions section, and the Learning
goals section.

• Lead TAs:

– Niki Hasrati (niki.hasrati@uwaterloo.ca)

The TAs’ office hours will be posted on MS Teams.

Learning goals

Decision Networks

• Model a real-world problem as a decision network with sequential decisions.

• Given a decision network with sequential decisions, determine the optimal policy and
the expected utility of the optimal policy by applying the variable elimination algo-
rithm.

Reinforcement Learning

• Implement the active adaptive dynamic programming algorithm for reinforcement
learning.

©Alice Gao 2021 v1.0 Page 3 of 12

mailto:niki.hasrati@uwaterloo.ca


CS 486/686 Spring 2021 Assignment 4

1 Decision Network for “Monty Hall” (28 marks)

The Monty Hall Problem is stated as follows.

You are on a game show, and you are given the choice of three doors: Behind one door is a
car; behind the others, goats. The host knows what’s behind each door but you don’t.

1. First, you pick a door, say Door 1.

2. Second, the host opens another door, say Door 3, which has a goat behind it.

3. Finally, the host says to you, “Do you want to pick Door 2?”

Is it to your advantage to switch your choice in step 3?

In step 2, the host always opens a door with a goat behind it, but not the door you chose
first, regardless of which door you chose first. If both remaining doors have goats behind
them, the host will open a door randomly. In step 3, you “reserve” the right to open the
door you chose first, but can change to the remaining door after the host opens the door to
reveal a goat. Your price is the item behind the final door you choose. You prefer cars over
goats (cars are worth 1 and goats are worth 0). The car is behind doors 1, 2, and 3 with
probabilities p1, p2 and 1− p1 − p2 respectively, and you know the values of p1 and p2.

Let’s model this problem using the following variables.

• CarDoor ∈ {1, 2, 3} is the door such that the car is behind it. This is a random
variable.

• FirstChoice ∈ {1, 2, 3} is the index of the door you picked first. This is a decision
variable.

• HostChoice ∈ {smaller, bigger} is the index of the door picked by the host. The value
of this variable indicates whether the index of the door picked is the smaller or bigger
one of the two doors left after you made your first choice. This is a random variable.

• SecondChoice ∈ {stay, switch} indicates whether you stay with the door you picked
first or switch to the remaining door not opened by the host. This is a decision variable.

• Utility ∈ {0, 1} is 0 if you get a goat and 1 if you get a car.

Please complete the following tasks.

©Alice Gao 2021 v1.0 Page 4 of 12



CS 486/686 Spring 2021 Assignment 4

(a) Complete the decision network in Figure 1 by drawing all the arcs. Show the probability
table for each random variable. Show the utility table for the utility node. You can use
p1 and p2 in your tables since you do not know their values yet.
Hint: When you are deciding whether node A should be a parent of node B (a decision
variable), think of the following. If node A is a parent of node B, then the optimal policy
may be of a form that: if A has value a, then B should be b. Otherwise, if node A is
not a parent of node B, the optimal policy for B cannot depend on the value of A. In
other worlds, adding an edge in the network increases the set of possible policies that
we would consider.

Figure 1: The Monty Hall Problem

Marking Scheme:
(10 marks)

• (4 marks) Correct parent nodes.

• (3 marks) Correct probability tables.

• (3 marks) Correct utility table.

(b) Assume that p1 = 1/3 and p2 = 1/3.
Compute the optimal policy for the decision network by applying the variable elimination
algorithm. Show all your work including all the intermediate factors created. Clearly
indicate the optimal policy and the expected utility of the agent following the optimal
policy.

©Alice Gao 2021 v1.0 Page 5 of 12



CS 486/686 Spring 2021 Assignment 4

Marking Scheme:
(9 marks)

• (4 marks) Sum out variables in the correct order.

• (2 marks) Correct optimal policy for FirstChoice.

• (2 marks) Correct optimal policy for SecondChoice.

• (1 mark) Correct value of the expected utility of the optimal policy.

(c) Consider a different case where p1 = 0.6 and p2 = 0.25. The car is much more likely to
be behind door 1 than to be behind door 2 or 3. The car is slightly more likely to be
behind door 2 than to be behind door 3.
Compute the optimal policy for the decision network by using the variable elimination
algorithm. Show all your work including all the intermediate factors created. Clearly
indicate the optimal policy and the expected utility of the agent following the optimal
policy.

Marking Scheme:
(9 marks)

• (4 marks) Sum out variables in the correct order.

• (2 marks) Correct optimal policy for FirstChoice.

• (2 marks) Correct optimal policy for SecondChoice.

• (1 mark) Correct value of the expected utility of the optimal policy.

©Alice Gao 2021 v1.0 Page 6 of 12



CS 486/686 Spring 2021 Assignment 4

2 Reinforcement Learning (62 marks)

You will implement the adaptive dynamic programming algorithm for reinforcement
learning and use it to explore some grid worlds similar to the one discussed in lecture.

Section 2.1 describes the grid worlds in our tests. Section 2.2 describes the active ADP
algorithm in detail.

Please complete the following tasks.

Implement all the empty functions in rl.py. Submit rl.py only on Marmoset.

On Marmoset, we will verify the accuracy of the utilities returned by your implementation
(actual_utilities) using the code below.

np.allclose(correct_utilities, actual_utilities, atol=0.15)

We derived the correct utilities by solving the Markov Decision Process using value iteration
since we know the transition probabilities for each world.

For any function that returns the utility values, make sure that the utility value of a wall is
zero. Otherwise, you may fail our tests because of this.

Marking Scheme: (62 marks)

Unit tests

• get_transition_prob

(1 public test + 4 secret tests) * 1 mark = 5 marks

• is_done_exploring

(1 public test + 4 secret tests) * 1 mark = 5 marks

• get_best_action

(1 public test + 1 secret test) * 1 mark = 2 marks

• exp_utils

©Alice Gao 2021 v1.0 Page 7 of 12



CS 486/686 Spring 2021 Assignment 4

(1 public test + 4 secret tests) * 2 marks = 10 marks

• optimistic_exp_utils

(1 public test + 4 secret tests) * 1 mark = 5 marks

• update_utils

(1 public test + 4 secret tests) * 2 marks = 10 marks

• utils_to_policy

(1 public test + 4 secret tests) * 1 mark = 5 marks

• adpa_move

(1 public test + 4 secret tests) * 2 marks = 10 marks

• adpa

(1 public test + 4 secret tests) * 2 marks = 10 marks

2.1 The grid worlds

We will test your program on multiple grid worlds. Each world is provided in a file named
world_*.txt where * is replaced by the world’s name. As an example, we will provided the
grid world discussed in lecture in world_lecture.txt. The content of world_lecture.txt
is shown below.

3,4
S * * *
* X * -1
* * * 1
1
-0.04

The world_lecture.txt file provides the following information.

• The first line describes the size of the grid. The first integer is the number of rows and
the second integer is the number of columns.

©Alice Gao 2021 v1.0 Page 8 of 12



CS 486/686 Spring 2021 Assignment 4

• The next few lines describes the grid. S denotes the start state. X denotes a wall. Any
integer value denotes a goal state with a reward equal to that integer. * denotes any
other non-goal state.

• The next line gives the discount factor.

• The next line gives the immediate reward of entering any non-goal state.

For the lecture world, the transition probabilities are the same as the ones discussed in
lecture. The agent moves in the intended direction with probability 0.8, moves to the left of
the intended direction with probability 0.1, and moves to the right of the intended direction
with probability 0.1.

Any other grid world

We may test your program with multiple other grid worlds. You can make the following
assumptions regarding each grid world.

• The world may not have the same dimensions as the lecture world.

• The world has at least one goal state. Entering any goal state causes the agent to
respawn in the start state.

• The immediate reward of entering any non-goal state is a fixed float value and is
provided in the world_*.txt file.

• In each state, there are four available actions: up, right, down, and left. We encode
them using integers: up: 0, right: 1, down: 2, left: 3.

• If the agent tries to move in a direction and hits a wall, the agent will stay in the same
square.

• By taking an action, the agent can end up traveling in any of the four directions with
positive probability.
In the lecture world, it is NOT possible for the agent to travel in the direction that
is opposite of the intended direction. However, in other worlds, the agent may travel
in an opposite direction of the intended direction with a positive probability.

©Alice Gao 2021 v1.0 Page 9 of 12



CS 486/686 Spring 2021 Assignment 4

2.2 The Active Adaptive Dynamic Programming Algorithm

Let’s define some quantities that we will use in the active ADP algorithm.

• γ is the discount factor. It’s provided in the world_*.txt file.

• R(s) is the immediate reward of entering any non-goal state. This is provided in the
world_*.txt file.

• N(s, a): the number of times that the agent has taken action a in state s. This is a
3D numpy array as shown below.

n_sa = np.zeros((*grid.shape, num_actions))

• N(s, a, s′): the number of times the agent has taken action a in state s and reached
state s′. This is a 5D numpy array as shown below.

n_sas = np.zeros((*grid.shape, num_actions, *grid.shape))

• P (s′|s, a) is the probability of transitioning to state s′ if the agent executes action a
in state s.

• Ne is an integer. It denotes the minimum number of times that the agent would like
to explore any state-action pair.

• R+ is an optimistic estimate of the reward if the agent hasn’t taken action a in state
s for at least Ne times.
R+ should be set to a value that is greater than or equal to the maximum reward that
the agent can obtain in any state.

• V +(s): The optimistic estimates of the agent’s expected utility of entering state s and
following the optimal policy thereafter. Use a 2D numpy array to store the long-term
utility value for each state in the grid world.

The active ADP algorithm is described below.

1. Suppose that the current optimistic utility estimates be V +(s), the current state is s.
Determine the agent’s best action, denoted by a, as follows.

best action = argmax
a

f

(∑
s′

P (s′|s, a)V +(s′), N(s, a)

)
(1)

f(u, n) =

{
R+, if n < Ne

u, otherwise.
(2)

©Alice Gao 2021 v1.0 Page 10 of 12



CS 486/686 Spring 2021 Assignment 4

The quantity f

(∑
s′ P (s′|s, a)V (s′), N(s, a)

)
is the optimistic estimate of the ex-

pected utility of taking action a in state s. If the agent has not taken action a in state
s for at least Ne times, this optimistic utility estimate is R+. Otherwise, if the agent
has taken action a in state s for at least Ne times, the optimistic utility estimate is
set to the actual utility estimate

∑
s′ P (s′|s, a)V (s′). In short, the optimistic utility

estimate encourages the agent to try each state-action pair at least Ne times.
We will rely on numpy to break ties. Determine the best action using the code
below, where opt_utils_for_a contains the four optimsitic utility estimates in the
order up, right, down, and left.

np.argmax(opt_utils_for_a)

2. Carry out the best action a computed in step 1 by calling the make_move_det function
in rl_provided.py. (The make_move_det function relies on the pre-generated random
moves in the world_*_run.txt file.)
Suppose that taking action a in state s caused the agent to transition to state s′.

3. Increment the counts N(s, a) and N(s, a, s′).

N(s, a) = N(s, a) + 1

N(s, a, s′) = N(s, a, s′) + 1

We will use these counts to estimate the transition probabilities.

4. Update these estimates by performing synchronous value iteration updates. Start with
the optimistic utility estimates V +(s) from the previous iteration of the loop. Stop
the value iteration updates when V +(s) converged based on the provided function
utils_converged in rl_provided.
The transition probability P (s′|s, a) is calculated as follows:

P (s′|s, a) =

0, if N(s, a) = 0
N(s, a, s′)

N(s, a)
, otherwise

The value iteration updates are given below.

V +(s)← R(s) + γmax
a

f

(∑
s′

P (s′|s, a)V +(s′), N(s, a)

)
(3)

f(u, n) =

{
R+, if n < Ne

u, otherwise.
(4)

5. Repeat the steps above until both requirements below are satisfied.
(1) The agent has visited each state-action pair (s, a) at least Ne times, and
(2) The optimistic utility estimates V +(s) have converged based on the provided func-
tion utils_converged.

©Alice Gao 2021 v1.0 Page 11 of 12



CS 486/686 Spring 2021 Assignment 4

2.3 Testing Your Program

In order to test your program, you will need to create a run file for each world. To do this,
copy the contents of the world_*.txt into another file called world_*_secret.txt and add
a last line describing the transition probabilities. See an example for the lecture world below.

3,4
S * * *
* X * -1
* * * 1
1
-0.04
0.8, 0.1, 0, 0.1

The four transition probabilities should sum to 1. The meanings of the transition probabil-
ities are as follows:

• The probability of traveling in the intended direction.

• The probability of traveling 90 degrees clockwise to the intended direction.

• The probability of traveling 180 degrees clockwise to the intended direction.

• The probability of traveling 270 degrees clockwise to the intended direction.

To create the run file (for example, for a world you have defined in world_lecture_secret.txt),
run the script as follows.

python3 create_run.py -world_name lecture -num_samples 5000 -seed 0

This will create a file called NEW_world_*_run.pickle which you will need to rename to
world_*_run.pickle.

Important Note: If you run this script for the lecture world, the resulting
run.pickle file will NOT match the provided world_lecture_run.pickle file.

If your program crashes, you might want to generate a run file with a larger number of
samples.

©Alice Gao 2021 v1.0 Page 12 of 12


	Decision Network for ``Monty Hall'' (28 marks)
	Reinforcement Learning (62 marks)
	The grid worlds
	The Active Adaptive Dynamic Programming Algorithm
	Testing Your Program


