
CS 486/686 Assignment 3 (79 marks)

Alice Gao

Due Date: 11:59 PM ET on Wednesday, July 21, 2021

Changes

• v1.1: Q1a, 1b, 1c, corrected the lexicographical order example to be (O0, O1, O2, S0, S1, S2).

• v1.2: Updated the typo in the recursive case of the backward recursion formula. It
should be identical to the formula given in lecture 15.

• v1.3: Updated the backward recursion description to indicate that the b values do not
need to be normalized.

• v1.4: Added an example of defining the umbrella environment in the program.

1

CS 486/686 Spring 2021 Assignment 3

Academic Integrity Statement

I declare the following statements to be true:

• The work I submit here is entirely my own.

• I have not shared and will not share any of my code with anyone at any point.

• I have not posted and will not post my code on any public or private forum or website.

• I have not discussed and will not discuss the contents of this assessment with anyone
at any point.

• I have not posted and will not post the contents of this assessment and its solutions
on any public or private forum or website.

• I will not search for assessment solutions online.

• I am aware that misconduct related to assessments can result in significant penalties,
possibly including failure in the course and suspension. This is covered in Policy 71:
https://uwaterloo.ca/secretariat/policies-procedures-guidelines/policy-71.

Failure to accept the integrity policy will result in your assignment not being graded.

By typing or writing my full legal name below, I confirm that I have read and understood
the academic integrity statement above.

©Alice Gao 2021 v1.4 Page 2 of 19

CS 486/686 Spring 2021 Assignment 3

Instructions

• Submit any written solutions in a file named writeup.pdf to the A3 Dropbox on Learn.
Submit any code to Marmoset at https://marmoset.student.cs.uwaterloo.ca/.
No late assignment will be accepted. This assignment is to be done individually.

• I strongly encourage you to complete your write-up in Latex, using this source file.
If you do, in your submission, please replace the author with your name and student
number. Please also remove the due date, the Instructions section, and the Learning
goals section. Thanks!

• Lead TAs:

– Ji Xin (ji.xin@uwaterloo.ca)

The TAs’ office hours will be posted on MS Teams.

Learning goals

Inference in Bayesian Networks

• Define factors. Manipulate factors using the operations restrict, sum out, multiply and
normalize.

• Trace the execution of and implement the variable elimination algorithm for calculating
a prior or a posterior probability given a Bayesian network.

Inference in Hidden Markov Models

• Construct a hidden Markov model given a real-world scenario.

• Perform filtering and smoothing by executing the forward-backward algorithm.

©Alice Gao 2021 v1.4 Page 3 of 19

https://marmoset.student.cs.uwaterloo.ca/

CS 486/686 Spring 2021 Assignment 3

The Umbrella and Robot Environments

We can model many problems using hidden Markov models. In this section, I include two
examples. The first one is the umbrella environment from lectures. The second one is the
robot localization problem from a textbook.

The Umbrella Environment

In lectures, I introduced the following umbrella environment. I discussed modeling this
problem as a hidden Markov model and calculating the filtered and smoothed probabilities
at each time step.

P (s0) = 0.5

P (st|st−1) = 0.7
P (st|¬st−1) = 0.3

P (ot|st) = 0.9
P (ot|¬st) = 0.2

St−2 St−1 St St+1

Ot−2 Ot−1 Ot Ot+1

The Full Robot Environment

Let’s consider a robot localization problem. This problem is similar to the example on page
389 of the Artificial Intelligence: Foundations of Computational Agents book by Poole and
Mackworth.

There is a circular corridor with 16 locations numbered 0 to 15. There are doors at positions
2, 4, 7, and 11. There is no door at any other location.

There is an arbitrary number of time steps, starting at time step t = 0. At each time step,
the robot is at one of the 16 locations. Let St ∈ {0, 1, . . . , 15} denote the robot’s location at
time step t.

©Alice Gao 2021 v1.4 Page 4 of 19

CS 486/686 Spring 2021 Assignment 3

Figure 1: The Robot Localization Problem (from the Poole and Mackworth Textbook)

The robot’s sensor noisily observes whether it is in front of a door or not. Let Ot ∈ {0, 1}
denote the robot’s observation at time step t. Ot = 0 if the robot observes a door and Ot = 1
if the robot does not observe a door. The observation probabilities are given below.

P (Ot = 0|St ∈ {2, 4, 7, 11}) = 0.8 (1)
P (Ot = 0|St ̸∈ {2, 4, 7, 11}) = 0.1 (2)

At each time step, the robot can choose one of three actions: move left, move right, and
stay still. Let At ∈ {0, 1, 2} denote the robot’s action at time step t. At = 0 denotes moving
left, At = 1 denotes moving right, and At = 2 denotes staying still. Taking an action may
cause the robot to stay in the same location or move to a different location. The effects of
the three actions are shown below.

The effects of moving left at time t:

P (St+1 = x|At = 0 ∧ St = x) = 0.05 (3)
P (St+1 = x− 1 (mod 16)|At = 0 ∧ St = x) = 0.90 (4)
P (St+1 = x− 2 (mod 16)|At = 0 ∧ St = x) = 0.05 (5)

The effects of moving right at time t:

P (St+1 = x|At = 1 ∧ St = x) = 0.15 (6)
P (St+1 = x+ 1 (mod 16)|At = 1 ∧ St = x) = 0.70 (7)
P (St+1 = x+ 2 (mod 16)|At = 1 ∧ St = x) = 0.15 (8)

The effects of staying still at time t:

P (St+1 = x|At = 2 ∧ St = x) = 1.0 (9)

The environment has the following properties:

©Alice Gao 2021 v1.4 Page 5 of 19

CS 486/686 Spring 2021 Assignment 3

• The robot’s observation at time t depends only on the robot’s location at time t. That
is, for each t, Ot depends on St only.

• The robot’s location at time t+1 only depends on its location at time t and its action
at time t. That is, for each t, St+1 depends on St and At only.

The robot starts at an unknown location. At any time step, the robot tries to determine its
location by estimating the probability of being in each location given its past observations
and past actions.

©Alice Gao 2021 v1.4 Page 6 of 19

CS 486/686 Spring 2021 Assignment 3

1 Locating the Robot by VEA (24 marks)

You will calculate some probabilities for a simplified robot localization problem by executing
the variable elimination algorithm.

The Simplified Robot Localization Problem:

The circular corridor has 2 locations (0, 1). There is no door at location 0 and a door at
location 1. The observation probabilities are as follows.

P (Ot = 0|St = 1) = 0.8 (10)
P (Ot = 0|St = 0) = 0.1 (11)

The robot still has three actions, but the dynamics of the actions are simplified.

The effects of moving left at time t:

P (St+1 = x|At = 0 ∧ St = x) = 0.05 (12)
P (St+1 = x− 1 (mod 2)|At = 0 ∧ St = x) = 0.95 (13)

The effects of moving right at time t:

P (St+1 = x|At = 1 ∧ St = x) = 0.15 (14)
P (St+1 = x+ 1 (mod 2)|At = 1 ∧ St = x) = 0.85 (15)

The effects of staying still at time t:

P (St+1 = x|At = 2 ∧ St = x) = 1.0 (16)

We will represent this problem for three time steps (0 to 2) using the graphical model in
Figure 2.

An important note regarding the actions: The only purpose of observing the action
at each time step is to determine the transition probabilities. We do not need to model the
actions explicitly since they are not really random variables. For this reason, we have put
the actions into the states for the time steps 0 and 1.

Please answer the following questions.

Using the Bayesian network in Figure 2, answer the questions below by executing the variable
elimination algorithm.

©Alice Gao 2021 v1.4 Page 7 of 19

CS 486/686 Spring 2021 Assignment 3

S0, A0 S1, A1 S2

O0 O1 O2

Figure 2: A Graphical Model of Simplified Robot Localization

(a) Answer the question below by executing the variable elimination algorithm using the
provided information. Eliminate the hidden variables in lexicographical order
(O0, O1, O2, S0, S1, S2).
Please provide the final answer only. Make sure that your answer has 4
decimal places.

Problem: At t = 2, what is the probability that the robot is in location 0?

You can use the information below.

• At t = 0, the robot’s prior belief over the two locations is a uniform distribu-
tion. That is, P (S0 = 0) = 0.5 and P (S0 = 1) = 0.5.

• At t = 0, the robot does not observe the door and decides to move right,

• At t = 1, the robot observes the door and decides to move left.

• At t = 2, the robot observes the door.

Marking Scheme: (2 marks) Correct answer up to 3 decimal places. All or
nothing.

(b) Answer the question below by executing the variable elimination algorithm using the
provided information. Eliminate the hidden variables in lexicographical order
(O0, O1, O2, S0, S1, S2).
Please provide the final answer only. Make sure that your answer has 4
decimal places.

Problem: At t = 1, what is the probability that the robot is in location 0?

You can use the information below.

• At t = 0, the robot’s belief over the two locations is a uniform distribution.

©Alice Gao 2021 v1.4 Page 8 of 19

CS 486/686 Spring 2021 Assignment 3

That is, P (S0 = 0) = 0.5 and P (S0 = 1) = 0.5.

• At t = 0, the robot does not observe the door and decides to move right,

• At t = 1, the robot observes the door and decides to move left.

• At t = 2, the robot observes the door.

Marking Scheme: (2 marks) Correct answer up to 3 decimal places. All or
nothing.

(c) Answer the question below by executing the variable elimination algorithm using the
provided information. Eliminate the hidden variables in lexicographical order
(O0, O1, O2, S0, S1, S2).
Show all the steps of executing the variable elimination algorithm based on
the formats in section 1.1. Make sure that your final answer has 4 decimal
places.

Problem: At t = 1, what is the probability that the robot is in location 0 and
does not observe a door?

You can use the information below.

• At t = 0, the robot’s belief over the two locations is a uniform distribution.
That is, Pr(S0 = 0) = 0.5 and Pr(S0 = 1) = 0.5.

• At t = 0, the robot observes a door and decides to move right.

• At t = 1, the robot decides to move left.

• At t = 2, the robot does not observe the door.

Marking Scheme: (20 marks)

• (2 marks) Correct answer up to 3 decimal places.

• (18 marks) The algorithm execution has the correct steps.

©Alice Gao 2021 v1.4 Page 9 of 19

CS 486/686 Spring 2021 Assignment 3

1.1 Showing the execution steps of VEA

Please describe the steps of the variable elimination algorithm using the format specified
below. You do not have to follow the spacing exactly. We will mark the steps by hand.

1. Show a factor as f(A B E). Use f to denote the name of every factor. Show the
variables in lexicographical order. For example,

f(A B E)

2. After each operation (restrict, multiply, sum out, normalize), show the resulting factor
in a table. The columns and rows can be in any order. For example,

B, E, Prob
1, 1, 0.9600
1, 0, 0.9500
0, 1, 0.2000
0, 0, 0.0100

3. Describe the define operation as shown below. Show the factors in any order.

Define factors f(A G) f(A W)

4. Describe the restrict operation as shown below.

Restrict f(B E) to B = 1 to produce f(E)
E, Prob
1, 0.9600
0, 0.9500

If you need to perform the restrict operation on multiple factors and on multiple
variables for each factor, go through the factors in lexicographical order. For each
factor, go through the variables in lexicographical order. Show one operation per
line.
The example below performs two restrict operation on f(A B E), one restrict operation
on f(A G), and one restrict operation on f(A W).

Restrict f(A B E) to A = 1 to produce f(B E)
B, E, Prob
1, 1, 0.9600
1, 0, 0.9500
0, 1, 0.2000
0, 0, 0.0100

©Alice Gao 2021 v1.4 Page 10 of 19

CS 486/686 Spring 2021 Assignment 3

Restrict f(B E) to B = 1 to produce f(E)
E, Prob
1, 0.9600
0, 0.9500

Restrict f(A G) to A = 1 to produce f(G)
G, Prob
1, 0.4000
0, 0.6000

Restrict f(A W) to A = 1 to produce f(W)
W, Prob
1, 0.8000
0, 0.2000

5. Describe the multiply operation as shown below.

Multiply f(A B E) f(B) to produce f(A B E)

If you need to multiply more than two factors together, show the operation on a single
line. The factors can be in any order. For example,

Multiply f(E) f() f(E) f() f() to produce f(E)
E, Prob
1, 0.0000
0, 0.0001

6. Describe the sum out operation as shown below.

Sum out W from f(W) to produce f()
Prob
1.0

7. Describe the normalize operation as shown below.

Normalize f(E) to produce f(E)
E, Prob
1, 0.0003
0, 0.9997

See below for an example output for the Holmes network minus the node R. The network is
given in lecture 13.

©Alice Gao 2021 v1.4 Page 11 of 19

CS 486/686 Spring 2021 Assignment 3

Computing P(E | A and B)

Define factors f(A B E) f(A G) f(A W) f(B) f(E)

Restrict f(A B E) to A = 1 to produce f(B E)
B, E, Prob
1, 1, 0.9600
1, 0, 0.9500
0, 1, 0.2000
0, 0, 0.0100

Restrict f(B E) to B = 1 to produce f(E)
E, Prob
1, 0.9600
0, 0.9500

Restrict f(A G) to A = 1 to produce f(G)
G, Prob
1, 0.4000
0, 0.6000

Restrict f(A W) to A = 1 to produce f(W)
W, Prob
1, 0.8000
0, 0.2000

Restrict f(B) to B = 1 to produce f()
Prob
0.0001

Sum out G from f(G) to produce f()
Prob
1.0

Sum out W from f(W) to produce f()
Prob
1.0

Multiply f(E) f() f(E) f() f() to produce f(E)
E, Prob
1, 0.0000
0, 0.0001

Normalize f(E) to produce f(E)
E, Prob

©Alice Gao 2021 v1.4 Page 12 of 19

CS 486/686 Spring 2021 Assignment 3

1, 0.0003
0, 0.9997

P(E | A and B) is 0.0003031569373991451

©Alice Gao 2021 v1.4 Page 13 of 19

CS 486/686 Spring 2021 Assignment 3

2 Locating the Robot via an HMM (55 marks)

You will implement the forward-backward algorithm to perform inference in an hidden
Markov model.

We have provided two python files: utils_soln.py and fba.py. utils_soln.py contains
all the provided functions. fbs.py contains empty function stubs for you to complete.

Section 2.1 describes the forward-backward algorithm. Section 2.2 describes how you can
model an environment using the Environment object in utils_soln.py.

Please complete the following tasks.

Implement the empty functions in fba.py. Submit fba.py only on Marmoset.

Marking Scheme: (55 marks)

Unit tests:

• create_observation_matrix
(1 public test + 2 secret tests) * 1 mark = 3 marks

• create_transition_matrices
(1 public test + 2 secret tests) * 1 mark = 3 marks

• forward_recursion
(1 public test + 6 secret tests) * 2 marks = 14 marks

• backward_recursion
(1 public test + 6 secret tests) * 3 marks = 21 marks

• fba
(1 public test + 6 secret tests) * 2 marks = 14 marks

©Alice Gao 2021 v1.4 Page 14 of 19

CS 486/686 Spring 2021 Assignment 3

2.1 The Forward-Backward Algorithm

There are t time steps in total, from 0 to t − 1. The algorithm makes use of both forward
and backward recursion.

Step 1 (Forward Recursion): Given the observations from time 0 to time t− 1, forward
recursion calculates the values f0:k = P (Sk|o0:k) for 0 ≤ k ≤ t − 1 using the recurrence
relation below.

Base case: f0:0 = αP (o0|S0)P (S0) (17)
Recursive case: f0:k = αP (ok|Sk)

∑
sk−1

P (Sk|sk−1) f0:(k−1), (1 ≤ k ≤ t− 1) (18)

The forward_recursion function returns a 2D numpy array of shape (t, number of states).
The vector at index i where 0 ≤ i ≤ t− 1 is the normalized vector f0:i.

Step 2 (Backward Recursion): Given observations from time 0 to time t− 1, backward
recursion calculates the values b(k+1):(t−1) = P (o(k+1):(t−1)|Sk) for 0 ≤ k ≤ t − 1 using the
recurrence relation below.

Base case: (19)
bt:t−1 = 1⃗ (20)

Recursive case: (21)
b(k+1):t−1 =

∑
sk+1

P (ok+1|sk+1) b(k+2):t−1 P (sk+1|Sk), (0 ≤ k ≤ t− 2) (22)

The backward_recursion function returns a 2D numpy array of shape (t+1, number of states).
The vector at index 0 is not used by the algorithm and can be an arbitrary vector (our tests
will ignore this vector). The vector at index i where 1 ≤ i ≤ t is bi:(t−1).

Step 3 (Forward-Backward Algorithm): Given the observations from time 0 to time
t− 1, the forward-backward algorithm calculates the values P (Sk|O0, . . . , Ot−1) for 0 ≤ k ≤
t− 1 using the equation below.

P (Sk|O0, . . . , Ot−1) = α f0:k bk+1:t−1, (0 ≤ k ≤ t− 1) (23)

The fba function returns a 2D numpy array of shape (t, number of states). The vector at
index i where 0 ≤ i ≤ t− 1 is the normalized vector P (Si|O0, . . . , Ot−1).

©Alice Gao 2021 v1.4 Page 15 of 19

CS 486/686 Spring 2021 Assignment 3

2.2 Modeling the umbrella, robot, or another environment

We can use the Environment object to model a variety of environment including the umbrella
and robot environments. We highly recommend that you test your program using a variety
of environments.

2.2.1 Modeling states

• The state types. (num_state_types, state_types)
The states have different types. The state type determines the probabilities of gener-
ating different observations.
For each environment, we will specify the number of state types (num_state_types)
and a list of state types (state_types).
For example,

– The umbrella environment has 2 types of states: rain (type 0), or no rain (type
1). We can initialize it as follows.
num_state_types = 2
state_types = [0, 1]

– The robot environment has 2 types of states: has door (type 0) or does not have
door (type 1). We can initialize it as follows.
num_state_types = 2
state_types = [1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1]

• The number of states. We do not need to specify the number of states explicitly. The
number of states is set to be the length of state_types.
For example,

– The umbrella environment has 2 states.
– The robot environment has 16 states.

2.2.2 Modeling observation probabilities

The state type determines the probabilities of generating different observations. If two states
have the same type, they generate the observations with the same probabilities. It is sufficient
to specify the observation probabilities for each state type instead of for each state.

The Environment object’s attribute observe_matrix stores the observation probabilities.

©Alice Gao 2021 v1.4 Page 16 of 19

CS 486/686 Spring 2021 Assignment 3

To create observe_matrix, we first define the number of observation types (num_observe_types).
We assume that the observation types are [0, 1, ..., num_observe_types - 1].

Next, we will define observe_probs: the probabilities of generating each observation type
for each state type. observe_probs is a 2D list. Entry (i, j) in observe_probs specifies the
probability of generating observation type j by state type i.

For example,

• For the umbrella environment, there are two observation types: has umbrella (type 0)
and no umbrella (type 1).

num_observe_types = 2
observe_probs = [[0.9, 0.1], [0.2, 0.8]]

• For the robot environment, there are two observation types: observes door (type 0)
and does not observe door (type 1).

num_observe_types = 2
observe_probs = [[0.8, 0.2], [0.1, 0.9]]

Given num_observe_types and observe_probs, you need to implement
create_observation_matrix to create observe_matrix using observe_probs.

The observe_matrix is a 2D numpy array. Entry (i, j) in the array specifies the probability
of generating observation type j in state i (not state type i). All the values in each row
should sum to 1 since they represent a distribution of observation probabilities.

2.2.3 Modeling transition probabilities

State transitions occur for different reasons in different environments. In the umbrella en-
vironment, the state transitions follow a stochastic process that the agent cannot control.
In the robot environment, the robot’s action at each time step causes a state transition to
occur.

The Environment object’s attribute transition_matrices defines the transition probabili-
ties. To accommodate the two types of environments, we will create transition_matrices
in two different ways.

Creating transition_matrices for the umbrella environment

©Alice Gao 2021 v1.4 Page 17 of 19

CS 486/686 Spring 2021 Assignment 3

In the umbrella environment, state transitions occur based on a stochastic process. We
initialize the environment with action_effects = None and a valid transition_matrices
attribute.

transition_matrices is a 3D numpy array. The entry (i, j, k) represents the probability of
transitioning from state j to state k given action i. Since the umbrella environment has no
actions, we will assume that there is a single dummy action. Thus, transition_matrices
is a list containing a single 2D numpy array in it. See an example below.

transition_matrices = [[[0.7, 0.3], [0.3, 0.7]]]

Creating transition_matrices for the robot environment

In the robot environment, different actions cause different state transitions. We initialize
the environment with a valid action_effects attribute and transition_matrices = None.
You need to implement create_transition_matrices to create transition_matrices us-
ing action_effects.

action_effects is a list of dictionaries. The i-th dictionary represents the state transition
probabilities as a result of executing the i-th action. See an example below.

action_effects[0] = {0: 0.1, -1: 0.8, -2: 0.1}
action_effects[1] = {0: 0.1, 1: 0.8, 2: 0.1}
action_effects[2] = {0: 1.0}

The keys in the i-th dictionary are relative state offsets after taking action i. The state
offsets are relative to the current state; they may be positive, negative or zero. For example,
a state offset of −2 means that the target state is two locations to the left, and a state offset
of 4 means that the target state is four locations to the right. Since the environment is
circular, there are many ways of specifying the relative state offsets. For examples, for the
moving left action, two possible set of keys are [0,−1,−2] and [0, 14, 15]. Make sure that
your code handles all the cases (by computing modulo the number of states).

You need to implement create_transition_matrix to create transition_matrices by
using action_effects. The transition_matrix is a 3D numpy array. The entry (i, j, k) in
the array specifies the probability of transitioning from state j to state k by taking the i-th
action. All the values in the (i, j)-th list should sum to 1 since they represent a distribution
of transition probabilities.

2.2.4 The Umbrella Environment

See below for an example of defining the umbrella environment in the program.

©Alice Gao 2021 v1.4 Page 18 of 19

CS 486/686 Spring 2021 Assignment 3

ue_num_state_types = 2
ue_state_types = [0, 1]
ue_num_observe_types = 2
ue_observe_probs = [[0.9, 0.1], [0.2, 0.8]]
ue_transition_matrices = np.array([[[0.7, 0.3], [0.3, 0.7]]])

ue = Environment(ue_num_state_types, ue_state_types, \
ue_num_observe_types, ue_observe_probs, \
None, ue_transition_matrices)

ue_init_probs = [1. / ue.num_states] * ue.num_states

©Alice Gao 2021 v1.4 Page 19 of 19

	Locating the Robot by VEA (24 marks)
	Showing the execution steps of VEA

	Locating the Robot via an HMM (55 marks)
	The Forward-Backward Algorithm
	Modeling the umbrella, robot, or another environment
	Modeling states
	Modeling observation probabilities
	Modeling transition probabilities
	The Umbrella Environment

