Proving Undecidability via Reductions

Alice Gao

Lecture 23

Outline

Learning Goals

A Template for Reduction Proofs

Examples of Reduction Proofs

Revisiting the Learning Goals

Learning Goals

By the end of this lecture, you should be able to:

- ▶ Define reduction.
- ▶ Describe at a high level how we can use reduction to prove that a decision problem is undecidable.
- Prove that a decision problem is undecidable by using a reduction from the halting problem.

Outline

Learning Goals

A Template for Reduction Proofs

Examples of Reduction Proofs

Revisiting the Learning Goals

Proving that other problems are undecidable

We proved that the halting problem is undecidable.

How do we prove that another problem is undecidable?

- ▶ We could prove it from scratch, or
- ▶ We could prove that it is as difficult as the halting problem. Hence, it must be undecidable.

Proving undecidability via reductions

We will prove undecidability via reductions.

Reduce the halting problem to problem P_B .

- ightharpoonup Given an algorithm for solving P_B , we could use it to solve the halting problem.
- \blacktriangleright If P_B is decidable, then the halting problem is decidable.
- lacktriangleright If the halting problem is undecidable, then P_B is undecidable.

Proving undecidability via reductions

Theorem: Problem P_B is undecidable.

Proof by Contradiction.

Assume that there is an algorithm B, which solves problem P_B .

We will construct algorithm \underline{A} , which uses algorithm \underline{B} to solve the halting problem. (Describe algorithm \underline{A} .)

Since algorithm B solves problem P_B , algorithm A solves the halting problem, which contradicts with the fact that the halting problem is undecidable.

Therefore, problem P_B is undecidable.

no no

Outline

Learning Goals

A Template for Reduction Proofs

Examples of Reduction Proofs

Revisiting the Learning Goals

Example 1 of reduction proofs

The halting-no-input problem:

Given a program P which takes no input, does P halt?

Theorem: The halting-no-input problem is undecidable.

Algorithm A solves the hatting problem

P'() {
return P(I);

Proof by contradiction:

Assume that there is an algorithm B, which solves the halting—no-input problem for any program P.

We will construct an algorithm A to solve the halting problem.

- Algorithm A works as follows:

 - A takes two inputs, a program (P) and an input I.
 Let program P' run P with input I and output the result of P(I).
- Run algorithm B with P' as the input. - Return the result of B(P')

By our construction of algorithm A, P' hatts if and only if P hatts on input I. Since algorithm B solves the halting—no-input problem, algorithm A solves the halting problem, which contradicts the fact that the halting problem is undecidable.

Therefore, the hatting-no-input problem is undecidable.

Example 2 of reduction proofs

The both-halt problem:

Given two programs P_1 and P_2 which take no input, do both programs halt?

Theorem: The both-halt problem is undecidable.

Example 3 of reduction proofs

P. which takes an input

The exists-halting-input problem

Given a program P, does there exist an input I such that P halts with input I?

Theorem The exists-halting-input problem is undecidable.

Algorithm A solves the halting problem yes Algorithm B solves
exists-halting-input problem Let P'ignore its input and run P with I input to program P' input to P'(I') {
return P(I); algorithm B

Proof by contradiction:

Assume that there is an algorithm B, which solves the exists—hatting—input problem for any program P.

We will construct algorithm A to solve the halting problem. Algorithm A works as follows:

- · A takes two Inputs, a program P and an Input I.
- Let program P'(ignore its input), run P with input I and reture P(I); common idea.
 - · Run algorithm B with P' as its input.
 - Return B(P').

By our construction of algorithm A,

P halts on input I if and only if there exists on input I' such that P' halts on input I'.

Since B solves the exists-halting-input problem, then A solves the halting problem, which contradicts the fact that the halting problem is undecidable.

Therefore, the exists-hatting-input problem is undecidable.

Revisiting the learning goals

By the end of this lecture, you should be able to:

- ▶ Define reduction.
- ▶ Describe at a high level how we can use reduction to prove that a decision problem is undecidable.
- ▶ Prove that a decision problem is undecidable by using a reduction from the halting problem.