Predicate Logic: Logical Consequence

Alice Gao

Lecture 15

The Learning Goals

Definition of Logical Consequence

Proving/Disproving a Logical Consequence

Revisiting the Learning Goals

By the end of this lecture, you should be able to:

- ▶ Define logical consequence for predicate logic.
- Prove that a logical consequence holds.
- Prove that a logical consequence does not hold.

Definition of Logical Consequence

Define the symbols.

- \blacktriangleright Σ is a set of predicate formulas.
- \blacktriangleright A is a predicate formula.

$$\begin{split} \Sigma &\models A \\ (\Sigma \text{ logically implies } A) \\ (A \text{ is a logical consequence of } \Sigma) \\ \text{iff for every valuation } v \text{, if } \Sigma^v = 1 \text{, then } A^v = 1. \end{split}$$

Consider the logical consequence $\Sigma \vDash A$.

To prove that the logical consequence holds, we need to consider

- (A) Every valuation v such that $\Sigma^v = 1$.
- (B) Every valuation v such that $\Sigma^v = 0$.
- (C) One valuation v such that $\Sigma^v = 1$.
- (D) One valuation v such that $\Sigma^v = 0$.

Consider the logical consequence $\Sigma \vDash A$.

To prove that the logical consequence does NOT hold, we need to consider

(A) Every valuation v such that $\Sigma^v = 1$ and $A^v = 1$. (B) Every valuation v such that $\Sigma^v = 1$ and $A^v = 0$. (C) One valuation v such that $\Sigma^v = 1$ and $A^v = 1$. (D) One valuation v such that $\Sigma^v = 1$ and $A^v = 0$.

Example: Prove/Disprove a logical consequence

Consider the logical consequence below.

```
\forall x\,\neg A(x)\vDash \neg (\exists x\,A(x)).
```

If the logical consequence holds, prove it. If it does not hold, provide a counterexample. Answer: This logical consequence holds. Proof: We prove this by contradiction. Assume that there exists a valuation such that $(\forall x \neg A(x))^{v} = 1$ and $(\neg \exists x A(x))^{v} = 0$. Form A(u) from A(x), u not occurring in A(x). By $(\forall x \neg A(x))^v = 1$, we obtain $(\neg A(u))^{v(u/\alpha)} = 1$ for every $\alpha \in D$. Therefore, $A(u)^{v(u/\alpha)} = 0$ for every $\alpha \in D$. (1) By $(\neg \exists x A(x))^v = 0$, we obtain $(\exists x A(x))^v = 1$. Thus, there exists $\beta \in D$ such that $A(u)^{v(u/\beta)} = 1$, which contradicts (1). Hence, $\forall x \neg A(x) \vDash \neg \exists x A(x)$. QED

Example: Prove/Disprove a logical consequence

Consider the logical consequence below.

$$\forall x (A(x) \rightarrow B(x)) \vDash \forall x A(x) \rightarrow \forall x B(x)$$

If the logical consequence holds, prove it. If it does not hold, provide a counterexample. Answer: This logical consequence holds. Proof: We prove this by contradiction. Assume that there exists a valuation such that $(\forall x(A(x) \rightarrow B(x)))^{v} = 1$ and $(\forall x A(x) \rightarrow \forall x B(x))^v = 0$. By $(\forall x A(x) \rightarrow \forall x B(x))^v = 0$. $(\forall x A(x))^{v} = 1$ and $(\forall x B(x))^{v} = 0$. Form A(u) and B(u), u not occurring in A(x) or in B(x). By $(\forall x A(x))^{v} = 1$, $A(u)^{v(u/\alpha)} = 1$ for every $\alpha \in D$. (1) By $(\forall x B(x))^{\nu} = 0$, $B(u)^{\nu(u/\alpha)} = 0$ for every $\alpha \in D.$ (2) By $(\forall x(A(x) \rightarrow B(x)))^{v} = 1$, $(A(u) \rightarrow B(u))^{v(u/\alpha)} = 1$ for every $\alpha \in D$. (3) By (1) and (3), we have that $B(u)^{v(u/\alpha)} = 1$ for every $\alpha \in D$, which contradicts (2). Hence, the logical consequence holds. QED

CS 245 Logic and Computation

Example: Prove/Disprove a logical consequence

Consider the logical consequence below.

$$\forall x A(x) \rightarrow \forall x B(x) \vDash \forall x (A(x) \rightarrow B(x))$$

If the logical consequence holds, prove it. If it does not hold, provide a counterexample. Answer: This logical consequence does not hold. Consider the valuation v: $D = \{1, 2\}$. $A^v = \{1\}$. $B^v = \emptyset$. Form A(u) and B(u) for u not occurring in A(x) and B(x). Since $2 \notin A^v$, $A(u)^{v(u/2)} = 0$. Thus, $(\forall x A(x))^v = 0$ and $(\forall x A(x) \rightarrow \forall x B(x))^{\upsilon} = 1.$ Since $1 \in A^v$ and $1 \notin B^v$, $A(u)^{v(u/1)} = 1$ and $B(u)^{v(u/1)} = 0$. Thus, $(A(u) \rightarrow B(u))^{v(u/1)} = 0$. Therefore, $(\forall x(A(x) \to B(x)))^{\upsilon} = 0.$ Thus, the logical consequence does not hold. QED

Example: Prove/Disprove the logical consequence

Prove the following

$$\exists x (A(x) \land B(x)) \vDash \exists x A(x) \land \exists x B(x).$$

We prove this by contradiction. Assume that there exists a valuation v such that $(\exists x(A(x) \land B(x)))^v = 1$ and $(\exists x A(x) \land \exists x B(x))^{v} = 0.$ Form A(u) and B(u) for u not occurring in A(x) and B(x). By $(\exists x(A(x) \land B(x)))^{\upsilon} = 1$, $(A(u) \land B(u))^{\upsilon(u/\alpha)} = 1$ for a particular $\alpha \in D$. (1) By $(\exists x A(x) \land \exists x B(x))^v = 0$, $(\exists x A(x))^v = 0$ and $(\exists x B(x))^v = 0$. By $(\exists x A(x))^v = 0$, $A(u)^{v(u/\alpha)} = 0$ for every $\alpha \in D$. By $(\exists x B(x))^v = 0, B(u)^{v(u/\alpha)} = 0$ for every $\alpha \in D$. Therefore, for every $\alpha \in D$, $(A(u) \wedge B(u))^{v(u/\alpha)} = 0$, which contradicts (1). QED

Fall 2019

Example: Prove/Disprove the logical consequence

Prove the following

$$\exists x A(x) \land \exists x B(x) \nvDash \exists x (A(x) \land B(x)).$$

Consider the valuation $v: D = \{1, 2\}$. $A^v = \{1\}$. $B^v = \{2\}$. Form A(u) and B(u) for u not occurring in A(x) and B(x). Since $1 \in A^v$, $A(u)^{v(u/1)} = 1$. Thus, $(\exists x A(x))^v = 1$. Since $2 \in B^v$, $B(u)^{v(u/2)} = 1$. Thus, $(\exists x B(x))^v = 1$. Therefore, $(\exists x A(x) \land \exists x B(x))^v = 1$. Since $1 \notin B^v$, $(A(u) \land B(u))^{v(u/1)} = 0$. Since $2 \notin A^v$, $(A(u) \land B(u))^{v(u/2)} = 0$. Therefore, $(\exists x (A(x) \land B(x))^v = 0$.

CS 245 Logic and Computation

Fall 2019

11 / 12

By the end of this lecture, you should be able to:

- ▶ Define logical consequence for predicate logic.
- Prove that a logical consequence holds.
- Prove that a logical consequence does not hold.