Predicate Logic: Logical Consequence

Alice Gao

Lecture 15

Outline

The Learning Goals

Definition of Logical Consequence

Proving/Disproving a Logical Consequence

Revisiting the Learning Goals

Learning goals

By the end of this lecture, you should be able to:

- Define logical consequence for predicate logic.
- Prove that a logical consequence holds.
- Prove that a logical consequence does not hold.

Definition of Logical Consequence

Define the symbols.

- Σ is a set of predicate formulas.
- A is a predicate formula.
$\Sigma \vDash A$
(Σ logically implies A)
(A is a logical consequence of Σ)
iff for every valuation v, if $\Sigma^{v}=1$, then $A^{v}=1$.

Prove a logical consequence

Consider the logical consequence $\Sigma \vDash A$.
To prove that the logical consequence holds, we need to consider
(A) Every valuation v such that $\Sigma^{v}=1$.
(B) Every valuation v such that $\Sigma^{v}=0$.
(C) One valuation v such that $\Sigma^{v}=1$.
(D) One valuation v such that $\Sigma^{v}=0$.

Disprove a logical consequence

Consider the logical consequence $\Sigma \vDash A$.
To prove that the logical consequence does NOT hold, we need to consider
(A) Every valuation v such that $\Sigma^{v}=1$ and $A^{v}=1$.
(B) Every valuation v such that $\Sigma^{v}=1$ and $A^{v}=0$.
(C) One valuation v such that $\Sigma^{v}=1$ and $A^{v}=1$.
(D) One valuation v such that $\Sigma^{v}=1$ and $A^{v}=0$.

Example: Prove/Disprove a logical consequence

Consider the logical consequence below.

$$
\forall x \neg A(x) \vDash \neg(\exists x A(x)) .
$$

If the logical consequence holds, prove it.
If it does not hold, provide a counterexample.
Answer: This logical consequence holds.
Proof: We prove this by contradiction. Assume that there exists a valuation such that $(\forall x \neg A(x))^{v}=1$ and $(\neg \exists x A(x))^{v}=0$. Form $A(u)$ from $A(x), u$ not occurring in $A(x)$.
By $(\forall x \neg A(x))^{v}=1$, we obtain $(\neg A(u))^{v(u / \alpha)}=1$ for every
$\alpha \in D$. Therefore, $A(u)^{v(u / \alpha)}=0$ for every $\alpha \in D$. (1)
By $(\neg \exists x A(x))^{v}=0$, we obtain $(\exists x A(x))^{v}=1$. Thus, there exists
$\beta \in D$ such that $A(u)^{v(u / \beta)}=1$, which contradicts (1).
Hence, $\forall x \neg A(x) \vDash \neg \exists x A(x)$. QED

Example: Prove/Disprove a logical consequence

Consider the logical consequence below.

$$
\forall x(A(x) \rightarrow B(x)) \vDash \forall x A(x) \rightarrow \forall x B(x)
$$

If the logical consequence holds, prove it.
If it does not hold, provide a counterexample.
Answer: This logical consequence holds.
Proof: We prove this by contradiction. Assume that there exists a valuation such that $(\forall x(A(x) \rightarrow B(x)))^{v}=1$ and
$(\forall x A(x) \rightarrow \forall x B(x))^{v}=0$. By $(\forall x A(x) \rightarrow \forall x B(x))^{v}=0$, $(\forall x A(x))^{v}=1$ and $(\forall x B(x))^{v}=0$. Form $A(u)$ and $B(u), u$ not occurring in $A(x)$ or in $B(x)$. By $(\forall x A(x))^{v}=1, A(u)^{v(u / \alpha)}=1$ for every $\alpha \in D$. (1) By $(\forall x B(x))^{v}=0, B(u)^{v(u / \alpha)}=0$ for every $\alpha \in D$. (2) By $(\forall x(A(x) \rightarrow B(x)))^{v}=1$, $(A(u) \rightarrow B(u))^{v(u / \alpha)}=1$ for every $\alpha \in D$. (3) By (1) and (3), we have that $B(u)^{v(u / \alpha)}=1$ for every $\alpha \in D$, which contradicts (2). Hence, the logical consequence holds. QED

Example: Prove/Disprove a logical consequence

Consider the logical consequence below.

$$
\forall x A(x) \rightarrow \forall x B(x) \vDash \forall x(A(x) \rightarrow B(x))
$$

If the logical consequence holds, prove it.
If it does not hold, provide a counterexample.
Answer: This logical consequence does not hold.
Consider the valuation $v: D=\{1,2\} . A^{v}=\{1\} . B^{v}=\emptyset$. Form $A(u)$ and $B(u)$ for u not occurring in $A(x)$ and $B(x)$.
Since $2 \notin A^{v}, A(u)^{v(u / 2)}=0$. Thus, $(\forall x A(x))^{v}=0$ and
$(\forall x A(x) \rightarrow \forall x B(x))^{v}=1$.
Since $1 \in A^{v}$ and $1 \notin B^{v}, A(u)^{v(u / 1)}=1$ and $B(u)^{v(u / 1)}=0$.
Thus, $(A(u) \rightarrow B(u))^{v(u / 1)}=0$. Therefore,
$(\forall x(A(x) \rightarrow B(x)))^{v}=0$.
Thus, the logical consequence does not hold. QED

Example: Prove/Disprove the logical consequence

Prove the following

$$
\exists x(A(x) \wedge B(x)) \vDash \exists x A(x) \wedge \exists x B(x)
$$

We prove this by contradiction. Assume that there exists a valuation v such that $(\exists x(A(x) \wedge B(x)))^{v}=1$ and $(\exists x A(x) \wedge \exists x B(x))^{v}=0$.
Form $A(u)$ and $B(u)$ for u not occurring in $A(x)$ and $B(x)$.
By $(\exists x(A(x) \wedge B(x)))^{v}=1,(A(u) \wedge B(u))^{v(u / \alpha)}=1$ for a particular $\alpha \in D$. (1)
By $(\exists x A(x) \wedge \exists x B(x))^{v}=0,(\exists x A(x))^{v}=0$ and $(\exists x B(x))^{v}=0$.
By $(\exists x A(x))^{v}=0, A(u)^{v(u / \alpha)}=0$ for every $\alpha \in D$. By
$(\exists x B(x))^{v}=0, B(u)^{v(u / \alpha)}=0$ for every $\alpha \in D$. Therefore, for every $\alpha \in D,(A(u) \wedge B(u))^{v(u / \alpha)}=0$, which contradicts (1). QED

Example: Prove/Disprove the logical consequence

Prove the following

$$
\exists x A(x) \wedge \exists x B(x) \not \models \exists x(A(x) \wedge B(x)) .
$$

Consider the valuation $v: D=\{1,2\} . A^{v}=\{1\}$. $B^{v}=\{2\}$. Form $A(u)$ and $B(u)$ for u not occurring in $A(x)$ and $B(x)$.
Since $1 \in A^{v}, A(u)^{v(u / 1)}=1$. Thus, $(\exists x A(x))^{v}=1$. Since $2 \in B^{v}, B(u)^{v(u / 2)}=1$. Thus, $(\exists x B(x))^{v}=1$. Therefore, $(\exists x A(x) \wedge \exists x B(x))^{v}=1$.
Since $1 \notin B^{v},(A(u) \wedge B(u))^{v(u / 1)}=0$. Since $2 \notin A^{v}$, $(A(u) \wedge B(u))^{v(u / 2)}=0$. Therefore, $\left(\exists x(A(x) \wedge B(x))^{v}=0\right.$.

Revisiting the learning goals

By the end of this lecture, you should be able to:

- Define logical consequence for predicate logic.
- Prove that a logical consequence holds.
- Prove that a logical consequence does not hold.

