Predicate Logic: Semantics

Alice Gao

Lecture 13

Outline

The Learning Goals

Evaluating Terms and Formulas w/o Variables

Evaluating Terms and Formulas w/o Bound Variables

Evaluating Quantified Formulas

A few clarifications

Satisfiable and Valid

Revisiting the Learning Goals

By the end of this lecture, you should be able to:

- Define a valuation.
- Determine the value of a term given a valuation.
- Determine the truth value of a formula given a valuation.
- Give a valuation that makes a formula true or false.
- Determine and justify whether a formula is satisfiable and/or valid.

The Language of Predicate Logic

- Domain: a non-empty set of objects
- Individuals: concrete objects in the domain
- Functions: takes objects in the domain as arguments and returns an object of the domain.
- Relations: takes objects in the domain as arguments and returns true or false. They describe properties of objects or relationships between objects.
- ▶ Variables: placeholders for concrete objects in the domain
- Quantifiers: for how many objects in the domain is the statement true?

The semantics of a predicate formula

Given a well-formed formula of predicate logic, does the formula evaluate to $0 \mbox{ or } 1$ in some context?

Example: What does $(F(a) \lor G(a, b))$ mean?

The symbols F, G, a, and b do not have intrinsic meanings.

In propositional logic, we need a truth valuation to give a meaning to a formula.

In predicate logic, we need a valuation to give a meaning to a term or a formula.

Valuation

A valuation v for our language $\mathcal L$ consists of

- 1. A domain D,
- 2. A meaning for each individual symbol, e.g. $a^{\upsilon}\in D$,
- 3. A meaning for each free variable symbol, e.g. $u^v \in D$,
- 4. A meaning for each relation symbol, e.g. $F^{v} \subseteq D^{n}$, $\approx^{v} = \{\langle x, x \rangle\} x \in D\} \subseteq D^{2}$.
- 5. A meaning for each function symbol, e.g. $f^v: D^m \to D$.

A function symbol must be interpreted as a total function

A function symbol f must be interpreted as a function f^v that is total on the domain D.

$$f^v:D^m\to D$$

- Any m-tuple (d₁,...,d_m) ∈ D^m can be an input to f^v.
 For any legal m-tuple (d₁,...,d_m) ∈ D^m,
 - $f^v(d_1^v,...,d_m^v) \in D.$

Which of the following functions is total?

(A)
$$g(x, y) = x - y$$
. $D = \mathbb{N}$ (natural numbers).
(B) $f(x) = \sqrt{x}$. $D = \mathbb{Z}$ (integers).
(C) $f(x) = x + 1$. $D = \{1, 2, 3\}$.
(D) $f(1) = 2$, $f(2) = 3$ and $f(3) = 3$. $D = \{1, 2, 3\}$.
(E) $g(x, y) = x > y$. $D = \mathbb{Z}$ (integers).

Value of Terms

Definition (Value of Terms)

The value of terms of L under valuation v over domain D is defined by recursion:

$$\begin{split} &1. \ a^v \in D. \\ &2. \ u^v \in D. \\ &3. \ f(t_1,\ldots,t_n)^v = f^v(t_1^v,\ldots,t_n^v). \end{split}$$

The assignment override notation

 $v(u/\alpha)$ keeps all the mappings in v intact EXCEPT reassigning u to $\alpha \in D$.

Consider a valuation: $u_1^v = 3$, $u_2^v = 3$, $u_3^v = 1$. $D = \{1, 2, 3\}$.

1.
$$u_1^{v(u_1/2)} = ?$$

2. $u_2^{v(u_1/2)} = ?$
3. $u_1^{v(u_1/2)(u_2/1)} = ?$
4. $u_2^{v(u_1/2)(u_2/1)} = ?$
5. $u_3^{v(u_1/2)(u_2/1)} = ?$

True Value of Formulas

Definition (Truth Value of Formulas)

The truth value of formulas of L under valuation v over domain D is defined by recursion:

1.
$$F(t_1, ..., t_n)^v = 1$$
 iff $\langle t_1^v, ..., t_n^v \rangle \in F^v$.
2. $(\neg A)^v = 1$ iff $A^v = 0$.
3. $(A \land B)^v = 1$ iff $A^v = 1$ and $B^v = 1$.
4. $(A \lor B)^v = 1$ iff $A^v = 1$ or $B^v = 1$.
5. $(A \to B)^v = 1$ iff $A^v = 0$ or $B^v = 1$.
6. $(A \leftrightarrow B)^v = 1$ iff $A^v = B^v$.
7. $(\forall x \ A(x))^v = 1$ iff for every $\alpha \in D$, $A(u)^{v(u/\alpha)} = 1$, where u does not occur in $A(x)$.

8.
$$(\exists x \ A(x))^v = 1$$
 iff there exists $\alpha \in D$, $A(u)^{v(u/\alpha)} = 1$, where u does not occur in $A(x)$.

Our language of predicate logic:

Individual symbols: a, b, c. Free variable symbols: u, v, w. Bound variable symbols: x, y, z. Function symbols: f is a unary function. g is a binary function. Relation symbols: F is a unary relation. G is a binary relation.

An example of a valuation

Valuation v:

- Domain: $D = \{1, 2, 3\}.$
- ▶ Individuals: $a^{v} = 1$, $b^{v} = 2$, $c^{v} = 3$.
- Free variables: $u^v = 3$, $v^v = 2$, $w^v = 1$.
- Functions:

$$\begin{array}{l} f^v \!\!:\; f^v(1) = 2, f^v(2) = 3, f^v(3) = 1. \\ g^v \!\!:\; g^v(x,y) = ((x+y) \!\!\mod 3) + 1. \end{array}$$

Relations:

 $\begin{array}{l} F^{v} \colon \, F^{v}(x) \text{ is true if and only if } x > 5. \\ G^{v} \colon \, G^{v}(x,y) \text{ is true if and only if } x > y. \end{array}$

Another example of a valuation

Valuation v':

- Domain: $D = \{Alice, Bob, Cate\}.$
- ▶ Individuals: $a^{v} = Alice$, $b^{v} = Bob$, $c^{v} = Cate$.
- Free variables: $u^v = Bob$, $v^v = Alice$, $w^v = Alice$.
- Functions:

 $\begin{array}{l} f^v : \ f^v(Alice) = Alice, f^v(Bob) = Cate, f^v(Cate) = Bob. \\ g^v : \ g^v(x,y) = \text{the person with the longer name. return } x \text{ if there is a tie.} \end{array}$

Relations:

 F^{v} : $F^{v}(x)$ is true iff the person likes chocolates. (Alice and Cate like chocolates whereas Bob dislikes chocolates.) G^{v} : $G^{v}(x, y)$ is true iff x is older than or has the same age as y. (Alice is older than Cate, who is older than Bob.)

Notation for functions and relations

Consider the domain $D = \{1, 2, 3\}$.

Functions:

•
$$f^v$$
 is the identify function. $f^v(x) = x$.

•
$$f^v(1) = 1$$
, $f^v(2) = 2$ and $f^v(3) = 3$.

Relations:

•
$$G^{v}$$
: $G^{v}(x, y)$ is true if and only if $x > y$.
• $G^{v} = \{\langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle\}$

Outline

The Learning Goals

Evaluating Terms and Formulas w/o Variables

Evaluating Terms and Formulas w/o Bound Variables

Evaluating Quantified Formulas

A few clarifications

Satisfiable and Valid

Revisiting the Learning Goals

CS 245 Logic and Computation

Evaluating terms and formulas w/o variables

Evaluate these terms and formulas under the valuation v. $f(f(a)), \ (F(a) \lor G(a,b)).$

Valuation v:

• Domain:
$$D = \{1, 2, 3\}.$$

lndividuals: $a^v = 1$, $b^v = 2$, $c^v = 3$.

Free variables: $u^v = 3$, $v^v = 2$, $w^v = 1$.

Functions:

$$\begin{aligned} &f^v\colon f^v(1)=2, f^v(2)=3, f^v(3)=1.\\ &g^v\colon g^v(x,y)=((x+y) \mod 3)+1. \end{aligned}$$

Relations:

 F^{v} : $F^{v}(x)$ is true if and only if x > 5. G^{v} : $G^{v}(x, y)$ is true if and only if x > y.

Give a valuation that makes the formula true/false

Complete the valuation \boldsymbol{v} such that

(A) $G(a, f(f(a)))^{v} = 1$ (B) $G(a, f(f(a)))^{v} = 0$

Valuation v:

- Domain: $D = \{1, 2, 3\}.$
- lndividuals: $a^v = ?$, $b^v = ?$, $c^v = ?$.
- Functions: $f^v : ?, g^v : ?$
- Relations: P^v : ?, G^v : ?

Outline

The Learning Goals

Evaluating Terms and Formulas w/o Variables

Evaluating Terms and Formulas w/o Bound Variables

Evaluating Quantified Formulas

A few clarifications

Satisfiable and Valid

Revisiting the Learning Goals

CS 245 Logic and Computation

A valuation for interpreting free variables

Valuation v:

- Domain: $D = \{1, 2, 3\}.$
- lndividuals: $a^{\upsilon} = 1$, $b^{\upsilon} = 2$, $c^{\upsilon} = 3$.
- Free variables: $u^v = 3$, $v^v = 2$, $w^v = 1$.
- Functions:

 $\begin{array}{l} f^v\colon f^v(1)=2, f^v(2)=3, f^v(3)=1.\\ g^v\colon g^v(x,y)=((x+y) \mod 3)+1. \end{array}$

Relations:

 F^{v} : $F^{v}(x)$ is true if and only if x > 5. G^{v} : $G^{v}(x, y)$ is true if and only if x > y.

Evaluating terms & formulas w/o bound variables

Evaluate these terms and formulas under the valuation $v. \ g(u,f(b)), \ G(a,f(f(u))).$

Valuation v:

• Domain:
$$D = \{1, 2, 3\}.$$

lndividuals: $a^v = 1$, $b^v = 2$, $c^v = 3$.

Free variables: $u^v = 3$, $v^v = 2$, $w^v = 1$.

Functions:

$$\begin{aligned} &f^v\colon f^v(1)=2, f^v(2)=3, f^v(3)=1.\\ &g^v\colon g^v(x,y)=((x+y) \mod 3)+1. \end{aligned}$$

Relations:

 F^{v} : $F^{v}(x)$ is true if and only if x > 5. G^{v} : $G^{v}(x, y)$ is true if and only if x > y.

Give a valuation that makes the formula true/false

Complete a valuation such that

(A)
$$G(a, f(f(u)))^{v} = 1$$

(B) $G(a, f(f(u)))^{v} = 0$

Valuation v:

- Domain: $D = \{1, 2, 3\}.$
- ▶ Individuals: $a^v = ?$, $b^v = ?$, $c^v = ?$.
- Free variables: $u^v = ?$, $u^v = ?$ $u^v = ?$.
- Functions: f^v :?, g^v :?
- Relations: P^v :?, G^v :?

Outline

The Learning Goals

Evaluating Terms and Formulas w/o Variables

Evaluating Terms and Formulas w/o Bound Variables

Evaluating Quantified Formulas

A few clarifications

Satisfiable and Valid

Revisiting the Learning Goals

CS 245 Logic and Computation

Evaluate quantified formulas under a valuation

Evaluate these formulas under the valuation v.

(A) $(\forall x \ (\exists y \ G(x, y)))$ (B) $(\exists x \ (\forall y \ G(x, y)))$

Valuation v:

- Domain: $D = \{1, 2, 3\}.$
- ▶ Relations: $G^{v} = \{\langle 1, 2 \rangle, \langle 3, 1 \rangle, \langle 2, 3 \rangle\}.$

Complete the valuation v to make the following formula true/false. (When satisfying the formula, try making G^v as small as possible.)

(A)
$$(\forall y \ (\exists x \ G(x, y)))$$

(B) $(\exists y \ (\forall x \ G(x, y)))$

Valuation v:

• Domain: $D = \{1, 2, 3\}.$

Outline

The Learning Goals

Evaluating Terms and Formulas w/o Variables

Evaluating Terms and Formulas w/o Bound Variables

Evaluating Quantified Formulas

A few clarifications

Satisfiable and Valid

Revisiting the Learning Goals

CS 245 Logic and Computation

Difference between Individual and Free Variable Symbols

Let our domain be the set of people. Let the predicate $L(\boldsymbol{u})$ be true if \boldsymbol{u} likes chocolates. Let \boldsymbol{a} be an individual symbol referring to Alice.

 \blacktriangleright L(a)

This formula only contains individual symbols.

Since a refers to Alice, the truth value of this formula is already determined (It's true because Alice likes chocolates =).

 $\blacktriangleright L(u)$

This formula only contains free variable symbols.

We do not know the truth value of this formula because u can refer to any person in the domain. We need to assign u to a particular person because we can determine whether this formula is true or false.

Difference between Free and Bound Variables

Let our domain be the set of integers.

$$u + u = v$$

The variables are free.

We do not know the truth value of this formula until we assign the free variables to elements of the domain.

$$\blacktriangleright \forall x \,\forall y \,(x+x=y)$$

The variables are bound.

We know the truth value of this formula because the meanings of the variables are given by the quantifiers.

Outline

The Learning Goals

Evaluating Terms and Formulas w/o Variables

Evaluating Terms and Formulas w/o Bound Variables

Evaluating Quantified Formulas

A few clarifications

Satisfiable and Valid

Revisiting the Learning Goals

CS 245 Logic and Computation

A formula A is satisfiable:

there exists a valuation v, $A^v = 1$.

A formula A is valid:

for every valuation v, $A^v = 1$.

Most predicate formulas are satisfiable but not valid because we have a great deal of freedom to choose the valuation.

Proving that a formula is satisfiable or not

Is the following formula satisfiable? If it's satisfiable, give a valuation that satisfies it. If it's not satisfiable, give a proof.

$$(\exists x \ F(x)) \to (\forall x \ F(x))$$

Proving that a formula is valid/not valid

Is the following formula valid? If it's valid, give a proof. If it's not valid, give a counterexample.

$$(\forall x \ F(x)) \to (\exists x \ F(x))$$

• Determine whether the formula is valid or not.

How do I prove that a formula is NOT valid?

How do I prove that a formula is valid?

Proving that a formula is valid or not

Is the following formula valid? If it's valid, give a proof. If it's not valid, give a counterexample.

$$(\forall x \ F(x)) \to (\exists x \ F(x))$$

Proving that a formula is valid or not

Is the following formula valid? If it's valid, give a proof. If it's not valid, give a counterexample.

$$(\exists x \ F(x)) \to (\forall x \ F(x))$$

Revisiting the learning goals

By the end of this lecture, you should be able to:

- Define a valuation.
- Determine the value of a term given a valuation.
- Determine the truth value of a formula given a valuation.
- Give a valuation that makes a formula true or false.
- Determine and justify whether a formula is satisfiable and/or valid.