Predicate Logic: Syntax

Alice Gao

Lecture 12

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

Learning goals

By the end of this lecture, you should be able to

- Define the set of terms inductively.
- Define the set of formulas inductively.
- Determine whether a variable in a formula is free or bound.
- Prove properties of terms and formulas by structural induction.
- Draw the parse tree of a formula.

The Language of Predicate Logic

- Domain: a non-empty set of objects.
- Individuals: concrete objects in the domain.
- Variables: placeholders for concrete objects in the domain.
- Functions: takes objects in the domain as arguments and returns an object of the domain.
- Relations: takes objects in the domain as arguments and returns true or false. They describe properties of objects or relationships between objects.
- Quantifiers: for how many objects in the domain is the statement true?

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

Predicate Language L

Eight classes of symbols:

- Individual symbols: a, b, c.
- Relation symbols: F, G, H.

A special equality symbol \approx

- Function symbols: f, g, h.
- Free variable symbols: u, v, w.
- Bound variable symbols: x, y, z.
- Connective symbols: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$.
- Quantifier symbol: \forall, \exists.
- Punctuation symbols: '(', ')', and ','

Free and Bound Variables

In a formula $\forall x A(x)$ or $\exists x A(x)$, the scope of a quantifier is the formula $A(x)$.

A quantifier binds its variable within its scope.
An occurrence of a variable in a formula

- is bound if it lies in the scope of some quantifier of the same variable.
- is free, otherwise.

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

Two Kinds of Expressions

Two kinds of expressions:

- A term refers to an object in the domain.
- A formula evaluates to 1 or 0 .

Terms

The set of terms Term (L) is defined below:

1. An individual symbol a standing alone is a term.
2. A free variable symbol u standing alone is a term.
3. If t_{1}, \ldots, t_{n} are terms and f is an n-ary function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
4. Nothing else is a term.

Examples of Terms

Terms:

- a, b, c, u, v, w
-f(b),g(a,f(b)),g(u,b),f(g(f(u),b))) (1)
A term with no free variable symbols is called a closed term. Which one(s) of the above are closed terms?

CQ: Which expressions are terms?

Which of the following expressions is a term?
If there are multiple correct answers, choose your favourite one.
(A) w
(B) $g(a, u)$
(C) $F(f(u, v), a)$
(D) $f(u, g(v, w), a)$
(E) $g(u, f(v, w), a)$

Individual symbols: a
Relation symbols: F is a binary relation symbol.
Function symbols: f is a binary function symbol and g is a 3-ary function symbol.
Free variable symbols: u, v, w.

Defining the set of terms inductively

The set of terms can be inductively defined as follows:

- The domain set X :
- The core set C :
- The set of operations P :

Structural induction on terms

Theorem: Every term has a property P.
Proof by structural induction:

- Base cases:
- Inductive cases:

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

Atomic Formulas

The set of atomic formulas $\operatorname{Atom}(L)$ is defined below:

- If F is an n -ary relation symbol and $t_{1}, \ldots, t_{n}(n \geq 1)$ are terms, then $F\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula.
- If t_{1}, t_{2} are terms, then $\approx\left(t_{1}, t_{2}\right)$ is an atomic formula.
- Nothing else is an atomic formula.

Examples of Atomic Formulas

Terms:
$>a, b, c, u, v, w$

- $f(b), g(a, f(b)), g(u, b), f(g(f(u), b))$

Atomic formulas:

- $F(a, u, f(b), f(w), g(v, f(a)))$
- $\approx(b, w)$

Well-Formed Formulas

The set of well-formed formulas Form (L) is defined below:

1. An atomic formula is a well-formed formula.
2. If A is a well-formed formula, then $(\neg A)$ is a well-formed formula.
3. If A and B are well-formed formulas and \star is one of $\wedge, \vee, \rightarrow$, and \leftrightarrow, then $(A \star B)$ is a well-formed formula.
4. If $A(u)$ is a well-formed formula and x does not occur in $A(u)$, then $\forall x A(x)$ and $\exists x A(x)$ are well-formed formulas.
5. Nothing else is a well-formed formula.

Explaining Case 4 of Formulas

If $A(u)$ is a well-formed formula and x does not occur in $A(u)$, then $\forall x A(x)$ and $\exists x A(x)$ are well-formed formulas.

- $A(u)$ is a well-formed formula where u is a free variable in the formula. We want to quantify u.
- In order to do so, we need to choose a symbol for a bound variable, e.g. x. We need to make sure that our choice of the bound variable symbol does not already occur in $A(u)$.

Examples for Case 4

- We are allowed to generate the formula $\forall y F(y, y)$. Start with $F(u, u)$. If we quantify u by replacing it with y, we get $\forall y F(y, y)$.
- We are not allowed to generate the formula $\exists y \forall y F(y, y)$. Start with $\forall y F(y, y)$. If we want to add the \exists quantifier, we will need to choose a bound variable symbol that is not y because y already appears in $\forall y F(y, y)$. So, there is no way for us to generate $\exists y \forall y F(y, y)$.
- We are allowed to generate the formula $\exists x G(x) \vee \forall x H(x)$. Start with $G(u)$ and $H(v)$ separately. We can quantify u by replacing it with x since x does not appear in $G(u)$). We get $\exists x G(x)$. We can quantify v by replacing it with x since x does not appear in $H(v)$. We get $\forall x H(x)$. Connecting the two formulas using \vee, we get $\exists x G(x) \vee \forall x H(x)$.

Examples of Formulas

Well-Formed Formulas:

- $F(a, b), \forall y F(a, y), \exists x \forall y F(x, y)$
- $F(u, v), \exists y F(u, y)$

A formula with no free variable symbols is called a closed formula or a sentence.
Which formulas above are closed formulas?

Determine whether a formula is well-formed

Which of the following is a well-formed formula?
(A) $f(u) \rightarrow F(u, v)$
(B) $\forall x F(m, f(x))$
(C) $F(u, v) \rightarrow G(G(u))$
(D) $G(m, f(m))$
(E) $F(m, f(G(u, v)))$

Individual symbols: m.
Free Variable Symbols: u, v.
Bound Variable symbols: x.
Relation symbols: F and G are binary relation symbols.
Function symbols: f is a unary function.

Defining the set of formulas inductively

The set of formulas can be inductively defined as follows:

- The domain set X :
- The core set C :
- The set of operations P :

Structural induction on formulas

Theorem: Every formula has a property P.
Proof by structural induction:

- Base cases:
- Inductive cases:

Comparing the Definitions of Well-Formed Formulas

Let's compare the set of predicate formulas to the set of propositional formulas.

Questions to think about:

- Which parts of the two definitions are the same?
- Which parts of the two definitions are different?

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

Parse Trees of Predicate Formulas

- The leaves are atomic formulas.
- Every quantifier has exactly one child (namely the formula which is its scope).
Example: $\forall x(F(b) \rightarrow \exists y(\forall z G(y, z) \vee H(f(u), x, y)))$

Revisiting the learning goals

By the end of this lecture, you should be able to

- Define the set of terms inductively.
- Define the set of formulas inductively.
- Determine whether a variable in a formula is free or bound.
- Prove properties of terms and formulas by structural induction.
- Draw the parse tree of a formula.

