Propositional Logic: Soundness of Formal Deduction

Alice Gao

Lecture 9

Learning Goals

By the end of this lecture, you should be able to

- ▶ Define the soundness of formal deduction.
- ▶ Prove that a tautological consequence holds using formal deduction and the soundness of formal deduction.
- ▶ Show that no formal deduction proof exists using the contrapositive of the soundness of formal deduction.

Tautological Consequence

Let Σ be a set of propositional formulas. Let A be a propositional formula.

$$\Sigma \vDash A$$

- \triangleright Σ semantically implies A.
- ightharpoonup A is a tautological consequence of Σ .
- For any truth valuation t, if every formula in Σ is true under t ($\Sigma^t = 1$), then A is also true under t ($A^t = 1$).

Several ways of proving a tautological consequence: truth table, direct proof, a proof by contradiction, etc.

Formal Deduction

Let Σ be a set of propositional formulas. Let A be a propositional formula.

$$\Sigma \vdash A$$

- $ightharpoonup \Sigma$ formally proves A.
- ▶ There exists a proof which syntactically transforms the premises in Σ to produce the conclusion A.
- ▶ A formal proof is a syntactic manipulation of symbols and it can be checked mechanically.

Tautological Consequence v.s. Formal Deduction

 $\Sigma \vDash A$ and $\Sigma \vdash A$ appear to be similar. Ideally, we would like them to be equivalent. This could mean two properties:

- If Σ ⊢ A, then Σ ⊨ A. (Soundness of formal deduction)
 If there exists a formal proof from Σ to A, then Σ
 tautologically implies A.
 (Everything I can formally prove is a tautological
 consequence.)
- 2. If $\Sigma \vDash A$, then $\Sigma \vdash A$. (Completeness of formal deduction) If Σ tautologically implies A, there exists a formal proof from Σ to A. (I can formally prove every tautological consequence.)

Soundness and Completeness of Formal Deduction

Theorem: Formal Deduction is both sound and complete.

Soundness of Formal Deduction means that the conclusion of a proof is always a logical consequence of the premises. That is,

If
$$\Sigma \vdash \alpha$$
, then $\Sigma \models \alpha$

Completeness of Formal Deduction means that all logical consequences in propositional logic are provable in Formal Deduction. That is,

If
$$\Sigma \models \alpha$$
, then $\Sigma \vdash \alpha$

Other proof systems

- resolution
- axiomatic systems
- semantic tableaux
- ▶ intuitionistic logic: sound but not complete. e.g. it cannot prove $p \lor (\neg p)$
- ▶ any system plus $p \land (\neg p)$ as an axiom: not sound but complete. not sound because we can prove $p \land (\neg p)$ which is false. complete because we can prove anything with $p \land (\neg p)$ as an axiom.

Proving the soundness of formal deduction

We will prove this by structural induction on the proof for $\Sigma \vdash A$.

A proof is a recursive structure.

A proof either

- derives the conclusion without using any inference rule, or (Base case)
- derives the conclusion by applying a rule of formal deduction on a proof. (Inductive case)

Proof of the soundness of formal deduction

Theorem: For a set of propositional formulas Σ and a propositional formula A, if $\Sigma \vdash A$, then $\Sigma \vDash A$.

Proof: We prove this by structural induction on the proof for $\Sigma \vdash A$.

Base case: Assume that there is a proof for $\Sigma \vdash A$ where $A \in \Sigma$. Consider a truth valuation such that $\Sigma^t = 1$. Since $A \in \Sigma$, then $A^t = 1$. Thus, $\Sigma \vDash A$.

(To be continued)

Proof of the soundness of formal deduction

Induction step: Consider several cases for the last rule applied in the proof of $\Sigma \vdash A$. (There is one case for every rule of formal deduction.)

▶ Assume that the proof of $\Sigma \vdash A$ applies the rule $\wedge +$ with the two premises $\Sigma \vdash B$ and $\Sigma \vdash C$ and reaches the conclusion $\Sigma \vdash B \wedge C$.

Let me prove this case for you.

Induction hypotheses: Assume that $\Sigma \vDash B$ and $\Sigma \vDash C$. We need to prove that $\Sigma \vDash B \land C$.

Consider a truth valuation t such that $\Sigma^t=1$. By the induction hypotheses, $B^t=1$ and $C^t=1$. By the truth table of \wedge , $(B\wedge C)^t=1$. Therefore, $\Sigma\vDash(B\wedge C)$.

(To be continued)

Proof of the soundness of formal deduction

Induction step (continued):

Assume that the proof of $\Sigma \vdash A$ applies the rule \to — with the two premises $\Sigma \vdash B$ and $\Sigma \vdash (B \to C)$ and reaches the conclusion $\Sigma \vdash C$.

Try proving this case yourself.

1. The following inference rule is called Disjunctive syllogism.

if
$$\Sigma \vdash \neg A$$
 and $\Sigma \vdash A \lor B$, then $\Sigma \vdash B$.

where A and B are well-formed propositional formulas.

Prove that this inference rule is sound.

That is, prove that if $\Sigma \vDash \neg A$ and $\Sigma \vDash A \lor B$, then $\Sigma \vDash B$.

- 2. Show that there does not exist a formal deduction proof for $p \lor q \vdash p$, where p and q are propositional variables.
- 3. Prove that $(A \to B) \not\vdash (B \to A)$ where A and B are propositional formulas.

The following inference rule is called Disjunctive syllogism.

if
$$\Sigma \vdash \neg A$$
 and $\Sigma \vdash A \lor B$, then $\Sigma \vdash B$.

where A and B are well-formed propositional formulas.

Prove that this inference rule is sound.

That is, prove that if $\Sigma \vDash \neg A$ and $\Sigma \vDash A \lor B$, then $\Sigma \vDash B$.

Proof:

Consider a truth valuation t under which $\Sigma^t = 1$. Since $\Sigma \vDash (\neg A)$ and $\Sigma \vDash A \lor B$, we have that $(\neg A)^t = 1$ and $(A \lor B)^t = 1$. We need to show that $B^t = 1$.

By the truth table of \neg , since $(\neg A)^t = 1$, $A^t = 0$.

By the truth table of \vee , since $(A\vee B)^t=1$, at least one of A and B is true under t. Since $A^t=0$, then $B^t=1$.

Therefore, $\Sigma \vDash B$ holds. QED

Show that there does not exist a formal proof for $p \lor q \vdash p$, where p and q are propositional variables.

Proof:

By the contrapositive of the soundness of formal deduction, if $p \lor q \nvDash p$, then $p \lor q \nvDash p$. Consider the truth valuation t where $p^t = 0$ and $q^t = 1$. By the truth table of \lor , $(p \lor q)^t = 1$. Thus, $p \lor q \nvDash p$. Therefore, $p \lor q \nvDash p$. QED

Prove that $(A \to B) \not\vdash (B \to A)$ where A and B are propositional formulas.

Proof:

By the contrapositive of the soundness of formal deduction, if $(A \to B) \nvDash (B \to A)$, then $(A \to B) \nvDash (B \to A)$. We need to give a counterexample to show that $(A \to B) \nvDash (B \to A)$.

Let A=p and B=q. Consider the truth valuation where $p^t=0$ and $q^t=1$. By the truth table of \to , $(p\to q)^t=1$ and $(q\to p)^t=0$. Therefore, $(A\to B)\not\models (B\to A)$ and $(A\to B)\not\models (B\to A)$.

QED

Revisiting the Learning Goals

By the end of this lecture, you should be able to

- ▶ Define the soundness of formal deduction.
- ▶ Prove that a tautological consequence holds using formal deduction and the soundness of formal deduction.
- ▶ Show that no formal deduction proof exists using the contrapositive of the soundness of formal deduction.