Propositional Logic: Soundness of Formal Deduction

Alice Gao

Lecture 9

By the end of this lecture, you should be able to

- Define the soundness of formal deduction.
- Prove that a tautological consequence holds using formal deduction and the soundness of formal deduction.
- Show that no formal deduction proof exists using the contrapositive of the soundness of formal deduction.

Tautological Consequence

Let Σ be a set of propositional formulas. Let A be a propositional formula.

$$\Sigma \vDash A$$

- \blacktriangleright Σ semantically implies A.
- A is a tautological consequence of Σ .
- For any truth valuation t, if every formula in Σ is true under t (Σ^t = 1), then A is also true under t (A^t = 1).

Several ways of proving a tautological consequence: truth table, direct proof, a proof by contradiction, etc.

Formal Deduction

Let Σ be a set of propositional formulas. Let A be a propositional formula.

$$\Sigma \vdash A$$

- \blacktriangleright Σ formally proves A.
- There exists a proof which syntactically transforms the premises in Σ to produce the conclusion A.
- A formal proof is a syntactic manipulation of symbols and it can be checked mechanically.

Tautological Consequence v.s. Formal Deduction

 $\Sigma \vDash A$ and $\Sigma \vdash A$ appear to be similar.

Ideally, we would like them to be equivalent. This could mean two properties:

- If Σ ⊢ A, then Σ ⊨ A. (Soundness of formal deduction) If there exists a formal proof from Σ to A, then Σ tautologically implies A.
- If Σ ⊨ A, then Σ ⊢ A. (Completeness of formal deduction) If Σ tautologically implies A, there exists a formal proof from Σ to A.

Soundness and Completeness of Formal Deduction

Theorem: Formal Deduction is both sound and complete.

Soundness of Formal Deduction means that the conclusion of a proof is always a logical consequence of the premises. That is,

If $\Sigma \vdash \alpha$, then $\Sigma \models \alpha$

Completeness of Formal Deduction means that all logical consequences in propositional logic are provable in Formal Deduction. That is,

If $\Sigma \models \alpha$, then $\Sigma \vdash \alpha$

Other proof systems

resolution

- axiomatic systems
- semantic tableaux
- \blacktriangleright intuitionistic logic: sound but not complete. e.g. it cannot prove $p \lor (\neg p)$

 \blacktriangleright any system plus $p \wedge (\neg p)$ as an axiom: not sound but complete.

not sound because we can prove $p \wedge (\neg p)$ which is false. complete because we can prove anything with $p \wedge (\neg p)$ as an axiom.

Proving the soundness of formal deduction

We will prove this by structural induction on the proof for $\Sigma \vdash A$.

- A proof is a recursive structure.
- A proof either
 - derives the conclusion without using any inference rule, or (Base case)
 - derives the conclusion by applying a rule of formal deduction on a proof. (Inductive case)

Proof of the soundness of formal deduction

Theorem: For a set of propositional formulas Σ and a propositional formula A, if $\Sigma \vdash A$, then $\Sigma \vDash A$.

Proof: We prove this by structural induction on the proof for $\Sigma \vdash A$.

Base case: Assume that there is a proof for $\Sigma \vdash A$ where $A \in \Sigma$. Consider a truth valuation such that $\Sigma^t = 1$. Since $A \in \Sigma$, then $A^t = 1$. Thus, $\Sigma \vDash A$.

(To be continued)

Proof of the soundness of formal deduction

Induction step: Consider several cases for the last rule applied in the proof of $\Sigma \vdash A$. (There is one case for every rule of formal deduction.)

Assume that the proof of Σ ⊢ A applies the rule ∧+ with the two premises Σ ⊢ B and Σ ⊢ C and reaches the conclusion Σ ⊢ B ∧ C.

Let me prove this case for you.

(To be continued)

Proof of the soundness of formal deduction

Induction step (continued):

▶ Assume that the proof of $\Sigma \vdash A$ applies the rule \rightarrow – with the two premises $\Sigma \vdash B$ and $\Sigma \vdash (B \rightarrow C)$ and reaches the conclusion $\Sigma \vdash C$.

Try proving this case yourself.

1. The following inference rule is called Disjunctive syllogism.

```
if \Sigma \vdash \neg A and \Sigma \vdash A \lor B, then \Sigma \vdash B.
```

where A and B are well-formed propositional formulas.

Prove that this inference rule is sound. That is, prove that if $\Sigma \models \neg A$ and $\Sigma \models A \lor B$, then $\Sigma \models B$.

- 2. Show that there does not exist a formal deduction proof for $p \lor q \vdash p$, where p and q are propositional variables.
- 3. Prove that $(A \to B) \nvDash (B \to A)$ where A and B are propositional formulas.

The following inference rule is called Disjunctive syllogism.

if $\Sigma \vdash \neg A$ and $\Sigma \vdash A \lor B$, then $\Sigma \vdash B$.

where A and B are well-formed propositional formulas.

Prove that this inference rule is sound. That is, prove that if $\Sigma \vDash \neg A$ and $\Sigma \vDash A \lor B$, then $\Sigma \vDash B$.

Show that there does not exist a formal proof for $p \lor q \vdash p$, where p and q are propositional variables.

Prove that $(A \to B) \not\models (B \to A)$ where A and B are propositional formulas.

Proof:

By the contrapositive of the soundness of formal deduction, if $(A \rightarrow B) \nvDash (B \rightarrow A)$, then $(A \rightarrow B) \nvDash (B \rightarrow A)$. We need to give a counterexample to show that $(A \rightarrow B) \nvDash (B \rightarrow A)$.

Let A = p and B = q. Consider the truth valuation where $p^t = 0$ and $q^t = 1$. By the truth table of \rightarrow , $(p \rightarrow q)^t = 1$ and $(q \rightarrow p)^t = 0$. Therefore, $(A \rightarrow B) \nvDash (B \rightarrow A)$ and $(A \rightarrow B) \nvDash (B \rightarrow A)$.

QED

Revisiting the Learning Goals

By the end of this lecture, you should be able to

- Define the soundness of formal deduction.
- Prove that a tautological consequence holds using formal deduction and the soundness of formal deduction.
- Show that no formal deduction proof exists using the contrapositive of the soundness of formal deduction.