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1 Propositional Logic
1.1 Translations
Exercise 1. Translate the following three sentences into propositional logic.

• Nadhi will eat a fruit if it is an apple.

• Nadhi will eat a fruit only if it is an apple.

• Nadhi will eat a fruit if and only if it is an apple.
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Exercise 2. Translate the following sentence into multiple propositional formulas. Show
that they are logically equivalent using a truth table.
Soo-Jin will eat an apple or an orange but not both.
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Exercise 3. Translate the following sentence into at least three syntactically different propo-
sitional formulas. Show that they are logically equivalent using a truth table.
If it is sunny tomorrow, then I will play golf, provided that I am relaxed.
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Exercise 4. Translate the following sentence into a propositional formula.
If I ace CS 245, I will get a job at Google; otherwise I will apply for the Geek
Squad.
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Exercise 5. Translate the following sentence into two propositional formulas and explain
why the two formulas are not logically equivalent.
Sidney will carry an umbrella unless it is sunny.
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1.2 Structural Induction
1.2.1 A template for structural induction on well-formed propositional formulas

Theorem: Every well-formed propositional formula 𝐴 has the property 𝑃 .

Proof by structural induction:

Define 𝑃(𝐴) to be that 𝐴 has the property 𝑃 .

Base case: 𝐴 is a propositional variable 𝑝. We need to prove that 𝑃(𝑝) holds.

Induction step:

Case 1: 𝐴 is a well-formed propositional formula of the form (¬𝐵) where 𝐵 is a well-formed
propositional formula.
Induction hypothesis: Assume that P(B) holds.
Prove that 𝑃((¬𝐵)) holds.

Case 2: 𝐴 is a well-formed propositional formula of the form 𝐵 ∗ 𝐶) where 𝐵 and 𝐶 are
well-formed propositional formulas and ∗ is one of ∧, ∨, →, and ↔.
Induction hypothesis: Assume that 𝑃(𝐵) and 𝑃(𝐶) hold.
Prove that 𝑃((𝐵 ∗ 𝐶)) holds.

By the principle of structural induction, 𝑃(𝐴) holds for every well-formed propositional
formula 𝐴.

QED
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Theorem 1. Every well-formed propositional formula has an equal number of opening and
closing brackets.
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Theorem 2. Every proper prefix of a well-formed formula has more opening than closing
brackets.

10



Theorem 3. Consider the set 𝐼(𝑋, 𝐶, 𝑃 ) inductively defined by the domain set 𝑋 = ℝ, the
core set 𝐶 = {0, 2}, and the set of operations 𝑃 = {𝑓1(𝑥, 𝑦) = 𝑥 + 𝑦, 𝑓2(𝑥, 𝑦) = 𝑥 − 𝑦}.
Every element in 𝐼(𝑋, 𝐶, 𝑃 ) is an even integer.
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1.3 The Semantics of an Implication
Exercise 6. Do you really understand an implication? We will find out.

• Think of an implication as a promise that someone made to you. In what case can you
prove that the promise has been broken (i.e. the implication is false)?

• When the premise is true, what is the relationship between the truth value of the
conclusion and the truth value of the implication?

• When the premise is false, the implication is vacuously true. Could you come up with
an intuitive explanation for this?

• If the conclusion is true, is the implication true or false?

• The implication (𝑎 → 𝑏) is logically equivalent to ((¬𝑎) ∨ 𝑏). Does this equivalent
formula make sense to you? Explain.
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1.4 Tautology, Contradiction, and Satisfiable but Not a Tautology
Exercise 7. Determine whether each of the following formulas is a tautology, satisfiable but
not a tautology, or a contradiction.

• 𝑝

• ((𝑟 ∧ 𝑠) → 𝑟)

• ((¬(𝑝 ↔ 𝑞)) ↔ (𝑞 ∨ 𝑝))

• ((((𝑝 ∨ 𝑞) ∧ (𝑝 ∨ (¬𝑞))) ∧ ((¬𝑝) ∨ 𝑞)) ∧ ((¬𝑝) ∨ (¬𝑞)))
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1.5 Logical Equivalence
Exercise 8. ”If it is sunny, I will play golf, provided that I am relaxed.”
𝑠: it is sunny. 𝑔: I will play golf. 𝑟: I am relaxed.
There are three possible translations:

1. (𝑟 → (𝑠 → 𝑔))

2. ((𝑠 ∧ 𝑟) → 𝑔)

3. (𝑠 → (𝑟 → 𝑔))

Prove that all three translations are logically equivalent.
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Exercise 9. ”If it snows then I will not go to class but I will do my assignment.”
𝑠: it snows. 𝑐: I will go to class. 𝑎: I will do my assignment.
There are two possible translations:

1. ((𝑠 → (¬𝑐)) ∧ 𝑎)

2. (𝑠 → ((¬𝑐) ∧ 𝑎))

Prove that the two translations are NOT logically equivalent.
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1.6 Analyzing Conditional Code
Consider the following code fragment:

if (input > 0 || !output) {
if (!(output && queuelength < 100)) {

P1
} else if (output && !(queuelength < 100)) {

P2
} else {

P3
}

} else {
P4

}

Define the propositional variables:

• 𝑖: input > 0

• 𝑢: output

• 𝑞: queuelength < 100

The code fragment becomes the following. We’ll call this code fragment #1.
if ( i || !u ) {

if ( !(u && q) ) {
P1

} else if ( u && !q ) {
P2

} else { P3 }
} else { P4 }

Code fragment #2:

if (( i && u) && q) {
P3

} else if (!i && u) {
P4

} else {
P1

}

Prove that these two pieces of code fragments are equivalent:
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1.7 Circuit Design
Basic gates:

Problem: Your instructors, Alice, Carmen, and Collin, are choosing questions to be put on
the midterm. For each problem, each instructor votes either yes or not. A question is chosen
if it receives two or more yes votes. Design a circuit, which outputs yes whenever a question
is chosen.

1. Draw the truth table based on the problem description.

x y z output
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

2. Convert the truth table into a propositional formula.

3. Then, convert the formula to a circuit.
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1.8 Tautological Consequence
Exercise 10. Let Σ = {(𝑝 → 𝑞), (𝑞 → 𝑟)}. Is Σ satisfiable? Why or why not?

Exercise 11. Let Σ = ∅. Is Σ satisfiable? Why or why not?

Exercise 12. Let Σ = {𝑝, (¬𝑝)}. Is Σ satisfiable? Why or why not?
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Exercise 13. Prove that {(¬(𝑝 ∧ 𝑞)), (𝑝 → 𝑞)} ⊨ (¬𝑝).

Exercise 14. Prove that {(¬(𝑝 ∧ 𝑞)), (𝑝 → 𝑞)} ⊭ (𝑝 ↔ 𝑞).

Exercise 15. Prove that ∅ ⊨ ((𝑝 ∧ 𝑞) → 𝑝)).
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Exercise 16. Prove that {𝑟, (𝑝 → (𝑟 → 𝑞))} ⊨ (𝑝 → (𝑞 ∧ 𝑟)).

Exercise 17. Prove that {(¬𝑝), (𝑞 → 𝑝)} ⊭ ((¬𝑝) ∧ 𝑞).

Exercise 18. Prove that {𝑝, (¬𝑝)} ⊨ 𝑟.
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1.9 Formal Deduction
1.9.1 Rules of Formal Deduction
membership (∈)

if 𝐴 ∈ Σ,
then Σ ⊢ 𝐴.

Special case: Reflexivity (Ref)

𝐴 ⊢ 𝐴.

Addition of premises (+)

if Σ ⊢ 𝐴,
then Σ, Σ′ ⊢ 𝐴.

And introduction (∧+)

if Σ ⊢ 𝐴,
Σ ⊢ 𝐵,

then Σ ⊢ 𝐴 ∧ 𝐵.

And elimination (∧−)

if Σ ⊢ 𝐴 ∧ 𝐵,
then Σ ⊢ 𝐴.

if Σ ⊢ 𝐴 ∧ 𝐵,
then Σ ⊢ 𝐵.

Or introduction (∨+)

if Σ ⊢ 𝐴,
then Σ ⊢ 𝐴 ∨ 𝐵.

if Σ ⊢ 𝐵,
then Σ ⊢ 𝐴 ∨ 𝐵.

Or elimination (∨−)

if Σ, 𝐴 ⊢ 𝐶,
Σ, 𝐵 ⊢ 𝐶,

then Σ, 𝐴 ∨ 𝐵 ⊢ 𝐶.

Negation introduction (¬+)

if Σ, 𝐴 ⊢ 𝐵,
Σ, 𝐴 ⊢ ¬𝐵,

then Σ ⊢ ¬𝐴.

Negation elimination (¬−)

if Σ, ¬𝐴 ⊢ 𝐵,
Σ, ¬𝐴 ⊢ ¬𝐵,

then Σ ⊢ 𝐴.

Implication introduction (→ +)

if Σ, 𝐴 ⊢ 𝐵,
then Σ ⊢ 𝐴 → 𝐵.

Implication elimination (→ −)

if Σ ⊢ 𝐴,
Σ ⊢ 𝐴 → 𝐵,

then Σ ⊢ 𝐵.
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Equivalence introduction (↔ +)

if Σ, 𝐴 ⊢ 𝐵,
Σ, 𝐵 ⊢ 𝐴,

then Σ ⊢ 𝐴 ↔ 𝐵.

Equivalence elimination (↔ −)

if Σ ⊢ 𝐴,
Σ ⊢ 𝐴 ↔ 𝐵,

then Σ ⊢ 𝐵.
if Σ ⊢ 𝐵,

Σ ⊢ 𝐴 ↔ 𝐵,
then Σ ⊢ 𝐴.

Comments:

• For each connective, the rules come in pairs. The introduction rule produces a conclu-
sion with the connective in it. The elimination rule produces a conclusion without the
connective.

• 𝐴 and 𝐵 can be any propositional formula. In particular, 𝐴 and 𝐵 can be the same.

• Σ and Σ′ are sets of propositional formulas.

• Σ, 𝐴 means Σ ∪ {𝐴}. Σ, Σ′ means Σ ∪ Σ′.
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1.9.2 Format of a Formal Deduction Proof

• Every line contains: a line number, a set of premises, the ⊢ symbol, a conclusion, and
a justification containing a formal deduction rule and possibly line numbers.

• The last line of a proof is the same as the original statement to be proved.

• Every line of the proof can be justified in two ways: (1) using the premises on the left
of ⊢ using the membership ∈ rule. (2) using one or more conclusions on previous lines
by using any other formal deduction rule.

• You have to bring a premise to the right of ⊢ before you can use it in a subsequent
line.

1.9.3 Strategies for writing a formal deduction proof

What is the thought process for producing a formal deduction proof?
• I’ve found that it is most effective to generate a proof backwards starting from the last

line of the proof.

• Write down the statement to be proved as the last line of the proof. Work backwards
from here.

• Look at the conclusion carefully. What is the structure of the conclusion (what is the
last connective applied in the formula? Can you apply an introduction rule to produce
the conclusion?

• Look at each premise carefully. What is the structure of the premise (what is the last
connective applied in the formula)? Can you apply an elimination rule to simplify it
and to produce a new formula?

• Working backwards from the conclusion is often more effective than working forward
from the premises. It keeps your eyes on the prize.

• If no rule is applicable, consider using ¬+ or ¬−. The negation rules are “universal”.
They can be applied in any situation but beware that they are not always helpful.

• When do we stop?
We can stop this process when we are able to justify every line of our proof. Usually,
we end this process by justifying the last line produced using the membership ∈ rule.

Why are we allowed to add premises to the left of ⊢?
• Think about adding a premise on the left of ⊢ as making an assumption in our proof.

For example, when you are proving a property of a natural number, you may write
your proof as follows: case 1, 𝑛 is even ... case 2, 𝑛 is odd ... Here 𝑛 is even and 𝑛 is
odd are additional assumptions made in your proof. Adding a premise on the left is
the same as making such an additional assumption.
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• We are only able to add a premise on the left of ⊢ if a formal deduction rule allows us
to do so.

• Eventually, we will need to remove the additional premises from the left of ⊢ in order
to produce the conclusion required in the original statement to be proved.
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1.9.4 And elimination and introduction

Exercise 19. Show that (𝑝 ∧ 𝑞), (𝑟 ∧ 𝑠) ⊢ (𝑞 ∧ 𝑠).

Exercise 20. Show that ((𝑝 ∧ 𝑞) ∧ 𝑟) ⊢ (𝑝 ∧ (𝑞 ∧ 𝑟)).
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1.9.5 Implication introduction and elimination

Exercise 21. Show that (𝑝 → 𝑞), (𝑞 → 𝑟) ⊢ (𝑝 → 𝑟).

Exercise 22. Show that (𝑝 → (𝑞 → 𝑟)), (𝑝 → 𝑞) ⊢ (𝑝 → 𝑟).
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Exercise 23. Show that (𝑝 → (𝑞 → 𝑟)) ⊢ ((𝑝 ∧ 𝑞) → 𝑟).

Exercise 24. Show that ((𝑝 ∧ 𝑞) → 𝑟) ⊢ (𝑝 → (𝑞 → 𝑟)).
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1.9.6 Or introduction and elimination

Exercise 25. Show that (𝑝 ∨ 𝑞) ⊢ ((𝑝 → 𝑞) ∨ (𝑞 → 𝑝)).

Exercise 26. Show that (𝑝 → 𝑞) ⊢ ((𝑟 ∨ 𝑝) → (𝑟 ∨ 𝑞)).
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Exercise 27. Show that ((𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟)) ⊢ (𝑝 ∧ (𝑞 ∨ 𝑟)).

Exercise 28. Show that (𝑝 ∧ (𝑞 ∨ 𝑟)) ⊢ ((𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟)).
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1.9.7 Negation introduction and elimination

Exercise 29. Show that 𝑝 → (¬𝑝) ⊢ (¬𝑝).

Exercise 30. Show that (𝑝 → (𝑞 → 𝑟)), 𝑝, (¬𝑟) ⊢ (¬𝑞).
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Exercise 31. Show that (𝑝 → 𝑞), (¬𝑞) ⊢ (¬𝑝).

Exercise 32. Show that (¬𝑝) → (¬𝑞) ⊢ (𝑞 → 𝑝).

Exercise 33. Show that (𝑝 ∧ (¬𝑞)) → 𝑟, (¬𝑟), 𝑝 ⊢ 𝑞.
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Exercise 34. Show that (𝑝 ∨ 𝑞), (¬𝑝) ⊢ 𝑞.

Exercise 35. Show that ∅ ⊢ (¬𝑝) → (𝑝 → (𝑝 → 𝑞)).
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1.9.8 Putting them together!

Exercise 36. (De Morgan’s Law) Show that (¬(𝑎 ∨ 𝑏)) ⊢ ((¬𝑎) ∧ (¬𝑏)).

Exercise 37. (De Morgan’s Law) Show that ((¬𝑎) ∧ (¬𝑏)) ⊢ (¬(𝑎 ∨ 𝑏)).
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Exercise 38. (De Morgan’s Law) Show that ((¬𝑎) ∨ (¬𝑏)) ⊢ (¬(𝑎 ∧ 𝑏)).

Exercise 39. (De Morgan’s Law) Show that (𝑎 ∨ 𝑏) ⊢ (¬((¬𝑎) ∧ (¬𝑏))).
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Exercise 40. (De Morgan’s Law) Show that (¬(𝑎 ∧ 𝑏)) ⊢ ((¬𝑎) ∨ (¬𝑏)).

Exercise 41. Show that (¬(𝑝 → 𝑞)) ⊢ (𝑞 → 𝑝).
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Exercise 42. (Law of excluded middle) ∅ ⊢ (𝑎 ∨ (¬𝑎)).
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1.9.9 Putting them together: Additional exercises

Exercise 43. (¬(𝑝 → 𝑞)) ⊢ 𝑝.

Exercise 44. ((𝑝 → 𝑞) → 𝑝) ⊢ 𝑝.

Exercise 45. ((𝑝 → 𝑞) → 𝑞) ⊢ ((¬𝑞) → 𝑝).

Exercise 46. ∅ ⊢ ((𝑝 → 𝑞) ∨ (𝑞 → 𝑟))

Exercise 47. (𝑝 → (𝑞 ∨ 𝑟)) ⊢ ((𝑝 → 𝑞) ∨ (𝑝 → 𝑟)).
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1.9.10 Other problems

Exercise 48. E4 Exercise 4: Prove that for any set of propositional formulas Σ and any
propositional variables 𝑝 and 𝑞, if Σ ⊢ 𝑝, then Σ ⊢ ((¬𝑝) → 𝑞).
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1.10 Soundness and Completeness of Formal Deduction
1.10.1 The soundness of inference rules

Exercise 49. The following inference rule is called Disjunctive syllogism.

if Σ ⊢ ¬𝐴,
Σ ⊢ 𝐴 ∨ 𝐵,

then Σ ⊢ 𝐵.

where 𝐴 and 𝐵 are well-formed propositional formulas.
Prove that this inference rule is sound. That is, prove that if Σ ⊨ ¬𝐴 and Σ ⊨ 𝐴 ∨ 𝐵, then
Σ ⊨ 𝐵.
You must use the definition of tautological consequence to write your proof. Do not use
any other technique such as truth table, valuation tree, logical identities, formal deduction,
soundness, or completeness.

Exercise 50. Consider the following inference rule:

(𝐴 → 𝐵)
(𝐵 → 𝐴) Flip the implication

where 𝐴 and 𝐵 are well-formed propositional formulas.
Prove that this inference rule is NOT sound. That is, prove the following statement:

{(𝐴 → 𝐵)} ⊭ (𝐵 → 𝐴)

You must use the definition of tautological consequence to write your proof. Do not use
any other technique such as truth table, valuation tree, logical identities, formal deduction,
soundness, or completeness.
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1.10.2 Soundness and Completeness of Formal Deduction

Exercise 51. Prove or disprove this statement: If {𝑎, 𝑏} ⊢ 𝑐, then ∅ ⊨ ((𝑎 ∧ 𝑏) → 𝑐). 𝑎, 𝑏,
and 𝑐 are well-formed propositional formulas.
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Exercise 52. Prove or disprove this statement: If {𝐴} ⊨ 𝐵, then ∅ ⊢ (𝐵 → 𝐴). 𝐴 and 𝐵
are well-formed propositional formulas.
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1.11 Proving the Completeness Theorem
Exercise 53. Prove that the following two definitions of a consistent set are equivalent.

1. There exists a formula 𝐴 such that Σ ⊬ 𝐴.

2. For every formula 𝐴, if Σ ⊢ 𝐴, then Σ ⊬ (¬𝐴).
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Exercise 54. Let Σ1 and Σ2 be sets of propositional formulas. Let Σ1 ⊆ Σ2.
Prove or disprove the statement below: If Σ1 is consistent, then Σ2 is consistent.

Exercise 55. Let Σ1 and Σ2 be sets of propositional formulas. Let Σ1 ⊆ Σ2.
Prove or disprove the statement below: If Σ2 is consistent, then Σ1 is consistent.
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Prove that the following two definitions of a maximally consistent set are equivalent. Assume
that Σ is consistent.

1. For every propositional formula 𝐵, if Σ ⊬ 𝐵 then Σ ∪ {𝐵} is inconsistent.

2. For every propositional formula 𝐴, Σ ⊢ 𝐴 or Σ ⊢ (¬𝐴).
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2 Predicate Logic
2.1 Translations
Exercise 56. Let the domain be the set of animals. Let 𝐵(𝑥) mean that 𝑥 is a bear. Let
𝐻(𝑥) mean that 𝑥 likes honey.
Translate “every bear likes honey” into predicate logic.
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Exercise 57. Let the domain be the set of animals. Let 𝐵(𝑥) mean that 𝑥 is a bear. Let
𝐻(𝑥) mean that 𝑥 likes honey.
Translate “some bear likes honey” into predicate logic.
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Based on the two exercises above, could you summarize the general patterns of translations?
Which binary connectives usually go with the universal and the existential quantifiers?
As a general rule of thumb, the universal quantifier is often used in conjunction with the im-
plication (→), and the existential quantifier is often used in conjunction with the conjunction
(∧). We’ve seen examples of both above.
The universal quantifier

• ∀ and →: This universal quantifier pairs well with the implication. This combination
is used to make a statement about a subset of the domain. Therefore, we use the
premise of the implication to restrict our attention to this subset. We don’t have to
worry about any element that is not in this subset because the implication is vacuously
true for any such element.

• ∀ and ∧: This combination is not impossible. However, it is a very strong statement.
This combination is claiming that every element of the domain must satisfy the prop-
erties connected by the ∧. If this is what you meant to express, then go ahead and use
this combination.

The existential quantifier

• ∃ and ∧: The existential quantifier pairs well with the conjunction. This combination
can be used to express the fact that there exists an element of domain which has the
two properties connected by the conjunction.

• ∃ and →: This combination does not make sense logically. The main reason is that it
is too easy to make such a formula true. As soon as we find an element of the domain,
which makes the premise of the implication false, the implication is vacuously true and
the formula is true as well.
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Exercise 58. Translate the following sentences into predicate formulas.

Let the domain contain the set of all students and courses. Define the following predicates:
𝐶(𝑥): 𝑥 is a course.
𝑆(𝑥): 𝑥 is a student.
𝑇 (𝑥, 𝑦): student 𝑥 has taken course 𝑦.

1. Every student has taken some course.

2. A student has taken a course.

3. No student has taken every course.

4. Some student has not taken any course.

5. Every student has taken every course.
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Exercise 59. Translating “at least”, “at most”, and “exactly”.
Translate the following sentences into predicate formulas.

• There is at least one bear.

• There are at least two bears.

• There is at most one bear.
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• There is exactly one bear.
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2.2 Semantics of Predicate Formulas
Consider this language of predicate logic:

• Individual constant symbols: 𝑎, 𝑏, 𝑐

• Free Variable Symbols: 𝑢, 𝑣, 𝑤

• Bound Variable symbols: 𝑥, 𝑦, 𝑧

• Function symbols: 𝑓 is a unary function, 𝑔 is a binary function.

• Predicate/Relation symbols: 𝑃 is a unary predicate, 𝑄 is a binary predicate.

2.2.1 Evaluating Formulas with No Variables

Exercise 60. Give a valuation 𝑣 such that 𝑄(𝑓(𝑐), 𝑎)𝑣 = 1 where 𝐷 = {1, 2, 3}.
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Exercise 61. Give a valuation 𝑣 such that 𝑄(𝑓(𝑐), 𝑎)𝑣 = 0.
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2.2.2 Evaluating Formulas without Bound Variables

Exercise 62. Give a valuation 𝑣 such that 𝑄(𝑓(𝑢), 𝑎)𝑣 = 1.

Exercise 63. Give a valuation 𝑣 such that 𝑄(𝑓(𝑥), 𝑎)𝑣 = 0.
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2.2.3 Evaluating Formulas with Free and Bound Variables

Exercise 64. Give a valuation 𝑣 such that (∃𝑥 𝑄(𝑥, 𝑢))𝑣 = 1. Assume that the domain is
𝐷 = {1, 2, 3}.
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Exercise 65. Give a valuation 𝑣 such that (∀𝑥 𝑄(𝑥, 𝑢))𝑣 = 1. Assume that the domain is
𝐷 = {1, 2, 3}.
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2.2.4 Evaluating Formulas with Bound Variables Only

Exercise 66. Give an interpretation 𝐼 and an environment 𝐸 such that (∃𝑥(∀𝑦 𝑄(𝑥, 𝑦)))𝑣 =
1. Start with the domain 𝐷 = {1, 2, 3}.
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Exercise 67. Give an interpretation 𝐼 and an environment 𝐸 such that (∃𝑥(∀𝑦 𝑄(𝑥, 𝑦)))𝑣 =
0. Start with the domain 𝐷 = {1, 2, 3}.
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2.3 Tautological Consequence
Collected Wisdom:

• Tautological consequence and formal deduction are two ways of proving
the same argument. Did you notice that Q1a of assignment 6 is the same as Q2d
of assignment 7 (in Spring 2018)? We asked you prove the same argument, once
with tautological consequence and once with formal deduction. If you have trouble
proving a statement using tautological consequence, you may want to try
formal deduction first, and then convert it to a tautological consequence
argument.
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Exercise 68. Show that {(∀𝑥 𝑃(𝑥))} ⊨ (∃𝑥 𝑃(𝑥)).

Exercise 69. Show that {(∃𝑥 𝑃(𝑥))} ⊭ (∀𝑥 𝑃(𝑥)).
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Exercise 70. Show that {(∀𝑥 (𝐴 → 𝐵))} ⊨ ((∀𝑥 𝐴) → (∀𝑥 𝐵)), where 𝑥 is a variable
symbol and 𝐴 and 𝐵 are well-formed predicate formulas.
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Exercise 71. Show that {((∀𝑥 𝐴) → (∀𝑥 𝐵))} ⊭ (∀𝑥 (𝐴 → 𝐵)), where 𝑥 is a variable
symbol and 𝐴 and 𝐵 are well-formed predicate formulas.
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Exercise 72. Show that {(∃𝑦 (∀𝑥 𝑄(𝑥, 𝑦)))} ⊨ (∀𝑥 (∃𝑦 𝑄(𝑥, 𝑦))).
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Exercise 73. Show that {(∀𝑥 (∃𝑦 𝑄(𝑥, 𝑦)))} ⊭ (∃𝑦 (∀𝑥 𝑄(𝑥, 𝑦))).

63



Exercise 74. Show that {(∀𝑥 (∃𝑦 (𝑃 (𝑥) ∨ 𝑄(𝑦))))} ⊨ (∃𝑦 (∀𝑥 (𝑃(𝑥) ∨ 𝑄(𝑦)))).

Remark 1. Wait a second! In exercise 73, didn’t we just show that this tautological conse-
quence does NOT hold? Not quite. In exercise 73, we dealt with a generic predicate formula
𝑄(𝑥, 𝑦) without knowing any additional information about the predicate. In this question, we
are working with a much more concrete predicate formula (𝑃 (𝑥) ∨ 𝑄(𝑦)). It turns out that,
having this concrete predicate formula allows us to prove the tautological consequence.

Remark 2. Let’s write out a proof sketch first.
To prove that the conclusion is true, we need to find one value 𝑑𝑦 ∈ 𝐷 for 𝑦 such that
(𝑃 (𝑥) ∨ 𝑄(𝑦)) is true for every possible value for 𝑥. The value of 𝑦 only influences the 𝑄(𝑦)
part of the formula. Does there exist a value for 𝑦 such that 𝑄(𝑦) is true?
Let’s suppose that we know that there is some 𝑑𝑦 ∈ 𝐷 for 𝑦 such that 𝑄(𝑦) is true. Would
this help us prove the conclusion? For sure. If 𝑄(𝑦) is true for 𝑦 = 𝑑𝑦, then (𝑃 (𝑥) ∨ 𝑄(𝑦))
must be true for 𝑦 = 𝑑𝑦 regardless of the value of 𝑥. We just found a value for 𝑦 which will
make the conclusion true.
We know how to prove the conclusion for the case when 𝑄(𝑦) for at least one value of 𝑦.
What if 𝑄(𝑦) is always false? Let’s look at the premise. If 𝑄(𝑦) is always false, for the
premise to be true, 𝑃(𝑥) must be true for every possible value of 𝑥. If 𝑃(𝑥) is true for every
possible value of 𝑥, then to prove that the conclusion is true, we could choose any value for
𝑦. For any value of 𝑦, 𝑃(𝑥) is true for any value of 𝑥, so (𝑃 (𝑥) ∨ 𝑄(𝑦)) must be true.
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2.3.1 Semantic Entailment - Additional Exercises

Exercise 75. {((∀𝑥 𝑃 (𝑥)) ∨ (∀𝑥 𝑄(𝑥)))} ⊨ (∀𝑥 (𝑃(𝑥) ∨ 𝑄(𝑥))).

Exercise 76. {(∃𝑥 (𝑃 (𝑥) → 𝑄(𝑥))), (∀𝑦 𝑃(𝑦))} ⊨ (∃𝑥 𝑄(𝑥))

Exercise 77. {((∃𝑥 𝑃(𝑥)) ∨ (∃𝑥 𝑄(𝑥)))} ⊨ (∃𝑥 (𝑃(𝑥) ∨ 𝑄(𝑥))).
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2.4 Formal Deduction

∀-introduction (∀+)

if Σ ⊢ 𝐴(𝑢), 𝑢 not occurring in Σ,
then Σ ⊢ ∀𝑥 𝐴(𝑥).

∀-elimination (∀−)

if Σ ⊢ ∀𝑥 𝐴(𝑥),
then Σ ⊢ 𝐴(𝑡).

Comments:

• ∀− is analogous to ∧−.

• ∀+ is analogous to ∧+.
Intuitively, this rule means that: from “any member 𝑢 of the set has a certain property”
we can deduce that “every member of the set has this property”. The arbitrariness
of 𝑢 means that the choice of 𝑢 is independent of the premises in Σ. This point is
expressed by “𝑢 not occurring in Σ”.
We know nothing about 𝑢 except that 𝑢 is a domain element. If 𝑢 is special, our
conclusion may not be valid.

∃-introduction (∃+)

if Σ ⊢ 𝐴(𝑡),
then Σ ⊢ ∃𝑥 𝐴(𝑥).

where 𝐴(𝑥) results by replacing
some (not necessarily all) occurrences of 𝑡
in 𝐴(𝑡) by 𝑥.

∃-elimination (∃−)

if Σ, 𝐴(𝑢) ⊢ 𝐵, 𝑢 not occurring in Σ or 𝐵,
then Σ, ∃𝑥 𝐴(𝑥) ⊢ 𝐵.

Comments:

• ∃− is analogous to ∨−.

– Proof by cases.
– The conclusion may have nothing to do with the starting formula.

• ∃+ is analogous to ∨+.
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2.4.1 Forall-elimination

Exercise 78. Show that {𝑃(𝑢), ∀𝑥 (𝑃(𝑥) → (¬𝑄(𝑥)))} ⊢ (¬𝑄(𝑢)).

2.4.2 Exists-introduction

Exercise 79. Show that {(¬𝑃(𝑣))} ⊢ (∃𝑥 (𝑃(𝑥) → 𝑄(𝑣))).

Exercise 80. Show that {(∀𝑥 𝑃(𝑥))} ⊢ (∃𝑦 𝑃(𝑦)).
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2.4.3 Forall-introduction

Exercise 81. Show that {(∀𝑥 𝑃(𝑥))} ⊢ (∀𝑦 𝑃(𝑦)).

Exercise 82. Show that (∀𝑥 (𝑃(𝑥) → 𝑄(𝑥))) ⊢ ((∀𝑥 𝑃(𝑥)) → (∀𝑦 𝑄(𝑦))).
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2.4.4 Forall-introduction - Additional Exercises

Exercise 83. {(∀𝑥 (∀𝑦 𝑃(𝑥, 𝑦)))} ⊢ (∀𝑦 (∀𝑥 𝑃(𝑥, 𝑦))).

Exercise 84. {(∀𝑥 ((¬𝑃 (𝑥)) ∧ 𝑄(𝑥)))} ⊢ (∀𝑥 (𝑃(𝑥) → 𝑄(𝑥))).

Exercise 85. {(∀𝑥 (𝑃 (𝑥) ∧ 𝑄(𝑥)))} ⊢ (∀𝑥 (𝑃(𝑥) → 𝑄(𝑥))).

Exercise 86. {(∀𝑥 (𝑃 (𝑥) ∧ 𝑄(𝑥)))} ⊢ ((∀𝑥 𝑃(𝑥)) ∧ (∀𝑥 𝑄(𝑥))).

Exercise 87. {((∀𝑥 𝑃 (𝑥)) ∨ (∀𝑥 𝑄(𝑥)))} ⊢ (∀𝑥 (𝑃(𝑥) ∨ 𝑄(𝑥))).

Exercise 88. {(∀𝑥 (𝑃 (𝑥) → 𝑄(𝑥)))} ⊢ ((∀𝑥 (¬𝑄(𝑥))) → (∀𝑥 (¬𝑃(𝑥)))).

Exercise 89. {(∀𝑥 (∀𝑦 (𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥))))} ⊢ (∀𝑥 (∀𝑦 (𝑅(𝑦, 𝑥) → 𝑅(𝑥, 𝑦)))).

Exercise 90. {(∀𝑥 (∀𝑦 (∀𝑧 ((𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑧)) → 𝑅(𝑥, 𝑧))))), (∀𝑥 (¬𝑅(𝑥, 𝑥)))}
⊢ (∀𝑥 (∀𝑦 (∀𝑧 (¬((𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑧)) ∧ 𝑅(𝑧, 𝑥)))))).

Exercise 91. {(∀𝑥 (∀𝑦 (∀𝑧 ((𝑅(𝑥, 𝑦) ∧ 𝑅(𝑥, 𝑧)) → 𝑅(𝑦, 𝑧))))), (∀𝑥 𝑅(𝑥, 𝑥))}
⊢ (∀𝑥 (∀𝑦 (∀𝑧 ((𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑧)) → 𝑅(𝑥, 𝑧))))).
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2.4.5 Exists-elimination

Exercise 92. (∃𝑥 𝑃(𝑥)) ⊢ (∃𝑦 𝑃(𝑦)).

Exercise 93. ∃𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥)) ⊢ (∃𝑥 𝑃(𝑥) ∧ (∃𝑥 𝑄(𝑥)).

Exercise 94. ((∃𝑥 𝑃(𝑥)) ∨ (∃𝑥 𝑄(𝑥))) ⊢ (∃𝑥 (𝑃(𝑥) ∨ 𝑄(𝑥))).
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Exercise 95. Show that (∀𝑥 (𝑃(𝑥) → 𝑄(𝑥))), (∃𝑥 𝑃(𝑥)) ⊢ (∃𝑥 𝑄(𝑥)).

Exercise 96. Show that (∀𝑥 (𝑄(𝑥) → 𝑅(𝑥))), (∃𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥))) ⊢ (∃𝑥 (𝑃(𝑥) ∧ 𝑅(𝑥))).
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2.4.6 Exists-Elimination - Additional Exercises

Exercise 97. {(∃𝑥 (𝑃 (𝑥) → 𝑄(𝑥))), (∀𝑦 𝑃(𝑦))} ⊢ (∃𝑥 𝑄(𝑥))

Exercise 98. {(∃𝑥 (∃𝑦 𝑃(𝑥, 𝑦)))} ⊢ (∃𝑦 (∃𝑥 𝑃(𝑥, 𝑦))).

Exercise 99. {(∃𝑥 ((¬𝑃(𝑥)) ∧ (¬𝑄(𝑥))))} ⊢ (∃𝑥 (¬(𝑃(𝑥) ∧ 𝑄(𝑥)))).

Exercise 100. {(∃𝑥 ((¬𝑃(𝑥)) ∨ 𝑄(𝑥)))} ⊢ (∃𝑥 (¬(𝑃(𝑥) ∧ (¬𝑄(𝑥))))).
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2.4.7 Putting them together

Exercise 101. Show that (∃𝑦 (∀𝑥 𝑃(𝑥, 𝑦))) ⊢ (∀𝑥 (∃𝑦 𝑃(𝑥, 𝑦))).
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Exercise 102. Show that {(∃𝑥 𝑃(𝑥)), (∀𝑥 (∀𝑦 (𝑃(𝑥) → 𝑄(𝑦))))} ⊢ (∀𝑦 𝑄(𝑦)).
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Exercise 103. Show that {(¬(∃𝑥 𝑃(𝑥)))} ⊢ (∀𝑥 (¬𝑃(𝑥))). (De Morgan)

Exercise 104. Show that {(∀𝑥 (¬𝑃(𝑥)))} ⊢ (¬(∃𝑥 𝑃(𝑥))). (De Morgan)
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Exercise 105. Show that {(∃𝑥 (¬𝑃(𝑥)))} ⊢ (¬(∀𝑥 𝑃(𝑥))). (De Morgan)

Exercise 106. Show that {(¬(∀𝑥 𝑃(𝑥)))} ⊢ (∃𝑥 (¬𝑃(𝑥))). (De Morgan)
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2.4.8 Putting them together - Additional Exercises

Exercise 107. {(∀𝑥 (𝑃(𝑥) → (¬𝑄(𝑥))))} ⊢ (¬(∃𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥)))).

Exercise 108. {(∀𝑥 (𝑃(𝑥) ∨ 𝑄(𝑥)))} ⊢ ((∀𝑥 𝑃(𝑥)) ∨ (∃𝑥 𝑄(𝑥))).

Exercise 109. {(∀𝑥 (𝑃(𝑥) → (𝑄(𝑥) ∨ 𝑅(𝑥)))), (¬(∃𝑥 (𝑃(𝑥) ∧ 𝑅(𝑥))))} ⊢ (∀𝑥 (𝑃(𝑥) → 𝑄(𝑥))).

Exercise 110. {(∃𝑥 (𝑃 (𝑥) ∧ 𝑄(𝑥))), (∀𝑥 (𝑃(𝑥) → 𝑅(𝑥)))} ⊢ (∃𝑥 (𝑅(𝑥) ∧ 𝑄(𝑥))).

Exercise 111. {(∃𝑥 (∃𝑦 (𝑆(𝑥, 𝑦) ∨ 𝑆(𝑦, 𝑥))))} ⊢ (∃𝑥 (∃𝑦 𝑆(𝑥, 𝑦))).

Exercise 112. {(∀𝑥 (∃𝑦 𝑅(𝑥, 𝑦)))} ⊢ (¬(∀𝑥 𝑅(𝑥, 𝑥))).
This is false. Can you prove it?

Exercise 113. {(∀𝑥 (∃𝑦 𝑅(𝑥, 𝑦)))} ⊢ (∀𝑥 (∃𝑦 (∃𝑧 (𝑅(𝑥, 𝑦) ∧ 𝑅(𝑥, 𝑧))))).

Exercise 114. {(∀𝑥 (𝑃(𝑥) ∨ 𝑄(𝑥))), (∃𝑥 (¬𝑄(𝑥))), (∀𝑥 (𝑅(𝑥) → (¬𝑃(𝑥))))} ⊢ (∃𝑥 (¬𝑅(𝑥))).

Exercise 115. ∅ ⊢ ( �∃𝑦 ( �𝑅(𝑦) → (∀𝑥 𝑅(𝑥))) �) �.

Exercise 116. {(∀𝑥 (∃𝑦 (𝑃 (𝑥) ∨ 𝑄(𝑦))))} ⊢ (∃𝑦 (∀𝑥 (𝑃(𝑥) ∨ 𝑄(𝑦)))).

Exercise 117. {(∀𝑥 ((∃𝑦 𝑃(𝑦)) → 𝑄(𝑥)))} ⊢ (∀𝑥 (∃𝑦 (𝑃 (𝑦) → 𝑄(𝑥)))).

Exercise 118. {(∀𝑥 (𝑃(𝑥, 𝑥) ∨ (∀𝑦 𝑄(𝑥, 𝑦))))} ⊢ (∀𝑥 ((∃𝑦 𝑃(𝑥, 𝑦)) ∨ 𝑄(𝑥, 𝑥))).

Exercise 119. ⊢ ((∀𝑥 (∃𝑦 𝑅(𝑥, 𝑦))) ∨ (¬(∀𝑥 𝑅(𝑥, 𝑥)))).
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2.5 Soundness and Completeness of Natural Deduction
2.5.1 Proving that an inference rule is sound or not sound

Lemma 1. Let 𝑡 be a predicate term. Let 𝐼 be an interpretation with domain 𝐷. Let 𝐸 be
an environment. Then we have that

𝑡𝑣 ∈ 𝐷.

Lemma 2. Let 𝐴 be a well-formed predicate formula. Let 𝑡 be a predicate term. Let 𝐼 and
𝐸 be an interpretation and environment. Let 𝑥 be a variable. Then we have that

𝐴[𝑡/𝑥]𝑣 = 𝐴(𝐼,𝐸[𝑥↦𝑡𝑣]).

Exercise 120. Prove that the ∀e inference rule is sound. That is, prove that the tautological
consequence holds:

{(∀𝑥 𝐴)} ⊨ 𝐴[𝑡/𝑥] (1)

where 𝐴 be a Predicate formula, 𝑥 is a variable, and 𝑡 is a Predicate term.

The proof sketch below is like an outline or a master plan. I will lay down the plan first.
Then I will fill in the missing details.

Proof Sketch. Consider an interpretation and environment (𝐼, 𝐸) such that (∀𝑥 𝐴)𝑣 = 1.
We need to show that 𝐴[𝑡/𝑥]𝑣 = 1.
(∀𝑥 𝐴)𝑣 = 1 holds because ...
𝐴(𝐼,𝐸[𝑥↦𝑡𝑣]) = 1 holds because ...
𝐴[𝑡/𝑥]𝑣 = 1 holds because ...
Thus, the tautological consequence holds and the inference rule is sound.
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Exercise 121. Prove that the ∃i inference rule is sound. That is, prove that the tautological
consequence holds:

{𝐴[𝑡/𝑥]} ⊨ (∃𝑥 𝐴) (2)

where 𝐴 is a predicate formula, 𝑡 is a predicate term, and 𝑥 is a variable.

Proof Sketch. Consider an interpretation and environment (𝐼, 𝐸) such that 𝐴[𝑡/𝑥]𝑣 = 1. We
need to show that (∃𝑥 𝐴)𝑣 = 1.
𝐴[𝑡/𝑥]𝑣 = 1 holds because ...
𝐴(𝐼,𝐸[𝑥↦𝑡𝑣]) = 1 holds because ...
(∃𝑥 𝐴)𝑣 = 1 holds because ...
Thus, the tautological consequence holds and the inference rule is sound.
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Exercise 122. Prove that the following inference rule is NOT sound.

𝐴[𝑡/𝑥]
(∀𝑥 𝐴) ∀𝑖∗ (3)

where 𝐴 is a predicate formula, 𝑡 is a predicate term, and 𝑥 is a variable.

Proof Sketch. Define the symbols in the language of Predicate logic that we consider.
Choose 𝐴 to be a concrete Predicate formula. Choose 𝑡 to be a concrete Predicate term.
Define an interpretation and an environment (𝐼, 𝐸).
Show that 𝐴[𝑡/𝑥]𝑣 = 1.
Show that (∀𝑥 𝐴)𝑣 = 0.
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Exercise 123. Prove that the following inference rule is NOT sound.

(∃𝑥 𝐴)
𝐴[𝑡/𝑥] ∃𝑒∗ (4)

where 𝐴 is a predicate formula, 𝑡 is a predicate term, and 𝑥 is a variable.

Proof Sketch. Define the symbols in the language of Predicate logic that we consider.
Choose 𝐴 to be a concrete Predicate formula. Choose 𝑡 to be a concrete Predicate term.
Define an interpretation and an environment (𝐼, 𝐸).
Show that (∃𝑥 𝐴)𝑣 = 1.
Show that 𝐴[𝑡/𝑥]𝑣 = 0.
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2.5.2 Additional Exercises

Exercise 124. Prove that the following inference rule is sound.

(∀𝑥(𝐴 → 𝐵)) 𝐴[𝑡/𝑥]
𝐵[𝑡/𝑥] ∀𝑒1 (5)

where 𝐴 and 𝐵 are predicate formulas, 𝑡 is a predicate term, and 𝑥 is a variable.

Exercise 125. Prove that the following inference rule is sound.

(∀𝑥(𝐴 → 𝐵)) (¬𝐵[𝑡/𝑥])
(¬𝐴[𝑡/𝑥]) ∀𝑒2 (6)

where 𝐴 and 𝐵 are predicate formulas, 𝑡 is a predicate term, and 𝑥 is a variable.

Exercise 126. Prove that the following inference rule is NOT sound.

(∀𝑥(𝐴 → 𝐵)) 𝐵[𝑡/𝑥]
𝐴[𝑡/𝑥] ∀𝑒3 (7)

where 𝐴 and 𝐵 are predicate formulas, 𝑡 is a predicate term, and 𝑥 is a variable.

Exercise 127. Prove that the following inference rule is NOT sound.

(∀𝑥(𝐴 → 𝐵)) (¬𝐴[𝑡/𝑥])
(¬𝐵[𝑡/𝑥]) ∀𝑒4 (8)

where 𝐴 and 𝐵 are predicate formulas, 𝑡 is a predicate term, and 𝑥 is a variable.
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2.5.3 Proofs using the soundness and completeness theorems

Exercise 128. Let Σ be a set of Predicate formulas and let 𝐴 be a Predicate formula.
If Σ ∪ {(¬𝐴)} is unsatisfiable, then Σ ⊢ 𝐴.

Proof Sketch. Assume that Σ ∪ {(¬𝐴)} is unsatisfiable. This means that, for any interpre-
tation and environment (𝐼, 𝐸), at least one formula in Σ ∪ {(¬𝐴)} is false.
Prove that Σ ⊨ 𝐴. Consider an interpretation and environment (𝐼, 𝐸). Assume that every
formula in Σ is true under (𝐼, 𝐸). Prove that 𝐴 is true under (𝐼, 𝐸).
We have Σ ⊢ 𝐴 by the completeness of Natural Deduction.

Exercise 129. Let Σ be a set of Predicate formulas and let 𝐴 be a Predicate formula.
If Σ ⊢ 𝐴, then Σ ∪ {(¬𝐴)} is unsatisfiable.

Exercise 130. Show that there is no formal deduction proof for {(∃𝑥 𝑃(𝑥))} ⊢ 𝑃(𝑡), where
𝑃 is a unary predicate, 𝑡 is a term and 𝑥 is a variable.
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3 Program Verification
3.1 Partial and Total Correctness
Exercise 131. Consider the Hoare triple ⦇ (𝑥 > 0) ⦈ 𝐶1 ⦇ ((𝑦 ∗ 𝑦) < 𝑥) ⦈.
If we run 𝐶1 starting with the state (𝑥 = 5), (𝑦 = 5), 𝐶1 terminates in the state (𝑥 = 5), (𝑦 =
0).
Is the Hoare triple satisfied under partial correctness?

Exercise 132. Consider the Hoare triple ⦇ (𝑥 > 0) ⦈ 𝐶2 ⦇ ((𝑦 ∗ 𝑦) < 𝑥) ⦈.
If we run 𝐶2 starting with the state (𝑥 = 5), (𝑦 = 5), 𝐶2 terminates in the state (𝑥 = 5), (𝑦 =
3).
Is the Hoare triple satisfied under partial correctness?
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Exercise 133. Consider the Hoare triple ⦇ (𝑥 > 0) ⦈ 𝐶3 ⦇ ((𝑦 ∗ 𝑦) < 𝑥) ⦈.
If we run 𝐶3 starting with the state (𝑥 = −3), (𝑦 = 5), 𝐶3 terminates in the state (𝑥 =
−3), (𝑦 = 0).
Is the Hoare triple satisfied under partial correctness?

Exercise 134. Consider the Hoare triple ⦇ (𝑥 > 0) ⦈ 𝐶4 ⦇ ((𝑦 ∗ 𝑦) < 𝑥) ⦈.
If we run 𝐶4 starting with the state (𝑥 = 2), (𝑦 = 5), 𝐶4 does not terminate.
Is the Hoare triple satisfied under partial correctness?
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Exercise 135. Is the following Hoare triple satisfied under partial and/or total correctness?
⦇ (𝑥 = 1) ⦈
while (1) {

x = 0
} ;
⦇ (𝑦 = 1) ⦈

Exercise 136. Is the following Hoare triple satisfied under partial and/or total correctness?
⦇ 𝑡𝑟𝑢𝑒 ⦈
y = 1 ;
z = 0 ;
while ( z != x ) {

z = z + 1 ;
y = y ∗ z ;

}
⦇ (𝑦 = 𝑥!) ⦈
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3.2 Assignment Statements
Complete the following annotations.
⦇ ⦈
x = 2 ;
⦇ (𝑥 = 2) ⦈

⦇ ⦈
x = 2 ;
⦇ (𝑥 = 𝑦) ⦈

⦇ ⦈
x = 2 ;
⦇ (𝑥 = 0) ⦈
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⦇ ⦈
x = x + 1 ;
⦇ (𝑥 = (𝑛 + 1)) ⦈

⦇ ⦈
x = y ;
⦇ ((2 ∗ 𝑥) = (𝑥 + 𝑦)) ⦈
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Exercise 137. Show that the following triple is satisfied under partial correctness.
⦇ (𝑦 = 6) ⦈
x = y + 1 ;
⦇ (𝑥 = 7) ⦈

Exercise 138. Show that the following triple is satisfied under partial correctness.
⦇ ((𝑥 = 𝑥0) ∧ (𝑦 = 𝑦0)) ⦈
t = x ;
x = y ;
y = t ;
⦇ ((𝑥 = 𝑦0) ∧ (𝑦 = 𝑥0)) ⦈
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3.3 Conditional Statements
Exercise 139. Show that the following triple is satisfied under partial correctness.
⦇ 𝑡𝑟𝑢𝑒 ⦈
i f ( x > y ) {

max = x ;
} else {

max = y ;
}
⦇ (((𝑥 > 𝑦) ∧ (𝑚𝑎𝑥 = 𝑥)) ∨ ((𝑥 ≤ 𝑦) ∧ (𝑚𝑎𝑥 = 𝑦))) ⦈
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Exercise 140. Show that the following triple is satisfied under partial correctness.
⦇ (𝑥 = 3) ⦈
i f ( x > 0) {

x = 1 ;
} else {

x = 0 ;
}
⦇ (𝑥 ≥ 0) ⦈
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Exercise 141. Show that the following triple is satisfied under partial correctness.
⦇ 𝑡𝑟𝑢𝑒 ⦈
i f (max < x ) {

max = x ;
}
⦇ (𝑚𝑎𝑥 ≥ 𝑥) ⦈
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Exercise 142. Show that the following triple is satisfied under partial correctness.
⦇ 𝑡𝑟𝑢𝑒 ⦈
i f ( x % 2 == 1) {

x = x + 1 ;
}
⦇ (∃𝑢 (𝑥 = (2 ∗ 𝑢))) ⦈
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Exercise 143. Show that the following triple is satisfied under partial correctness.
⦇ 𝑡𝑟𝑢𝑒 ⦈
i f ( x < 5) {

r = 0 ;
} else {

i f ( x > 10) {
r = 0 ;

} else {
r = 1 ;

}
}
⦇ ((((𝑥 < 5) ∨ (𝑥 > 10)) ∧ (𝑟 = 0)) ∨ (((5 ≤ 𝑥) ∧ (𝑥 ≤ 10)) ∧ (𝑟 = 1))) ⦈
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3.4 Conditional Statements: Additional Exercises
Exercise 144. Show that the following triple is satisfied under partial correctness.
⦇ 𝑡𝑟𝑢𝑒 ⦈
x = a ∗ a ;
y = b ∗ b ;
z = x + y ;
i f ( b > a ) {

z = z + 2 ∗ a ∗ b ;
} else {

z = z − 2 ∗ a ∗ b ;
}
⦇ ((∃𝑢 (𝑢 ∗ 𝑢 = 𝑧)) ⦈
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3.5 While Loops
Exercise 145. Show that the following triple is satisfied under partial correctness.
⦇ (𝑥 ≥ 0) ⦈
y = 1 ;
z = 0 ;
while ( z != x ) {

z = z + 1 ;
y = y ∗ z ;

}
⦇ (𝑦 = 𝑥!) ⦈

Remark 3. There is a while loop in the program. To complete the proof, we need to come
up with an invariant for the while loop. We produce the following table, which contains
the values of all the variables in the program whenever the execution reaches the while test
𝑧! = 𝑥.
Note: We can choose any non-negative value for 𝑥. For the following table, we chose 𝑥 = 5.
Note: In the table, I wrote 𝑦 as a factorial. Doing this is helpful for seeing a relationship
between the variables (With this, it is easy to see that 𝑦 = 𝑧! in every row of the table). Also,
the post-condition says that 𝑦 should be a factorial. If we want to make progress towards that
post-condition, then it makes sense that 𝑦 is equal to some factorial at every iteration of the
loop.

x z y
5 0 1 = 0!
5 1 1 = 1!
5 2 2 = 2!
5 3 6 = 3!
5 4 24 = 4!
5 5 120 = 5!

Given the table, we can try to come up with relationship between the variables. For the
relationship to be an invariant, it has to be true in every row of the truth table.
For example,

• (¬(𝑧 = 𝑥)) is NOT an invariant. It is NOT true in the last row of the table.

• (𝑧 ≤ 𝑥) IS an invariant. It is true in every row of the table.

• (𝑦 = 𝑧!) IS an invariant. It is true in every row of the table.

• (𝑦 = 𝑥!) is NOT an invariant. It is only true in the last row of the table and not true
in any other row.
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• ((𝑧 ≤ 𝑥) ∧ (𝑦 = 𝑧!)) IS an invariant.

Note: We can combine one or more invariants with an ∧ to produce new invariants. If 𝐴
and 𝐵 are invariants, then (𝐴 ∧ 𝐵) is an invariant as well.
So far, we have found three invariants: (𝑧 ≤ 𝑥), (𝑦 = 𝑧!), and ((𝑧 ≤ 𝑥) ∧ (𝑦 = 𝑧!)). Which
of these invariants will lead to valid proofs? It turns out that both the second and third
invariants will both lead to valid proofs.
How do I choose an invariant to complete my proof? The only sure way of answering this
question is to try completing the proof with the invariant. The proof is valid if and only if
we can prove all of the implied conditions using the invariant.
However, there are two strategies to speed up this process of selecting ani nvariant that works.

• A useful invariant is often similar to the post-condition. In our example, both
invariants that work ((𝑦 = 𝑧!) and ((𝑧 ≤ 𝑥) ∧ (𝑦 = 𝑧!))) have the component (𝑦 = 𝑧!),
which is similar to the post-condition (𝑦 = 𝑥!).
This makes intuitive sense. An invariant describes the progress we are making towards
the post-condition at every iteration of the loop. Therefore, it is only natural that the
invariant looks similar to the post-condition.

• The last implied condition (implied C) is often the most difficult to satisfy.
Thus, to test whether an invariant works, it may be more efficient to try proving implied
(C) first.

See the completed solution below with the invariant (𝑦 = 𝑧!).
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Exercise 146. Show that the following triple is satisfied under partial correctness.
⦇ (𝑥 ≥ 0) ⦈
y = 1 ;
z = 0 ;
while ( z < x ) {

z = z + 1 ;
y = y ∗ z ;

}
⦇ (𝑦 = 𝑥!) ⦈
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3.6 While Loops: Additional Exercises
Exercise 147. Show that the following triple is satisfied under partial correctness.
⦇ ((𝑛 ≥ 0) ∧ (𝑎 ≥ 0)) ⦈
s = 1 ;
i = 0 ;
while ( i != n) {

s = s ∗ a ;
i = i + 1 ;

}
⦇ (𝑠 = 𝑎𝑛) ⦈

Exercise 148. Show that the following triple is satisfied under partial correctness.
⦇ ((𝑛 ≥ 0) ∧ (𝑎 ≥ 0)) ⦈
s = 1 ;
i = 0 ;
while ( i < n) {

s = s ∗ a ;
i = i + 1 ;

}
⦇ (𝑠 = 𝑎𝑛) ⦈
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3.7 Array Assignments
Exercise 149. Show that the following triple is satisfied under partial correctness.
⦇ ((𝐴[𝑥] = 𝑥0) ∧ (𝐴[𝑦] = 𝑦0)) ⦈
t = A[ x ] ;
A[ x ] = A[ y ] ;
A[ y ] = t ;
⦇ ((𝐴[𝑥] = 𝑦0) ∧ (𝐴[𝑦] = 𝑥0)) ⦈ array ass ignment
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3.8 Putting them together
Exercise 150. (Reversing an array)
Consider an array 𝑅 of 𝑛 integers, 𝑅[1], 𝑅[2], ..., 𝑅[𝑛].
Consider the following program which reverses the elements inside the array 𝑅.
Let 𝑟𝑥 denote the element at index 𝑥 in the array 𝑅 before the program execution.
Prove that the following triple is satisfied under total correctness.
⦇ ((∀𝑥 (1 ≤ 𝑥 ≤ 𝑛 → 𝑅[𝑥] = 𝑟𝑥))) ⦈
j = 1 ;
while (2∗ j <= n) {

t = R[ j ] ;
R[ j ] = R[ n+1− j ] ;
R[ n+1− j ] = t ;
j = j + 1 ;

}
⦇ ((∀𝑥 (1 ≤ 𝑥 ≤ 𝑛 → 𝑅[𝑥] = 𝑟𝑛+1−𝑥))) ⦈
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4 Undecidability
4.1 Prove that a problem is decidable
Collected Wisdom:

• When you describe an algorithm, make sure that it terminates. For example, if a set
𝑆 is infinite, your algorithm cannot iterate through every element of 𝑆. For another
example, it is okay to draw the truth table of a given formula because the truth table
has finite size.

• An algorithm usually considers several cases. Make sure that you clearly indicate the
return value of the algorithm in every case.

Exercise 151. The propositional-satisfiability problem: Is the propositional formula 𝐴 sat-
isfiable?
Prove that the propositional-satisfiability problem is decidable.

Exercise 152. The propositional-tautology problem: Is the propositional formula 𝐴 a tau-
tology?
Prove that the propositional-tautology problem is decidable.
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4.2 The Halting Problem is Undecidable
Exercise 153. The Halting Problem: Given a program 𝑃 and an input 𝐼, does P terminate
when run with input 𝐼?
Prove that the Halting Problem is undecidable.
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4.3 Prove that a problem is undecidable
Collected Wisdom:

• Suppose that we are trying to prove that problem 𝑋 is undecidable. In your reduction,
make the inputs to the algorithm for solving problem 𝑋 relate to 𝑃 and 𝐼 . After all,
we are trying to construct an algorithm to determine whether 𝑃 terminates when run
with input 𝐼 .

• To verify whether a reduction leads to a valid proof, consider two different cases: (1)
𝑃 terminates when run with input 𝐼 . (2) 𝑃 does not terminate when run with input
𝐼 . A reduction works if and only if the constructed algorithm gives the correct answer
for both cases.

• A few useful constructions:

1. Construct a program which runs 𝑃 with input 𝐼 .
2. Construct a program which does nothing and terminates immediately.
3. Construct a program which has an infinite loop and runs forever.
4. Construct a program, which ignores its input and does one of 1, 2, and 3.
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Exercise 154. The halting-no-input problem: Given a program 𝑃 that requires no input,
does 𝑃 halt?
Prove that the halting-no-input problem is undecidable.
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Exercise 155. The both-halt problem: Given two programs 𝑃1 and 𝑃2 that take no input,
do both programs halt?
Prove that the both-halt problem is undecidable.

Remark 4. Other reductions:

• Let 𝑃1 do nothing. Let 𝑃2 run 𝑃 with input 𝐼. (This works.)

• Let 𝑃1 contain an infinite loop. Let 𝑃2 run 𝑃 with input 𝐼. (This does NOT work.)

Remark 5. A variant of this problem:
Consider the both-run-forever problem: Given two programs 𝑃1 and 𝑃2, do both programs
run forever?
Prove that the both-run-forever problem is undecidable.
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Exercise 156. We say that two problems agree on all input if and only if, for every input
𝑥, either they both run forever, or they both halt and return the same value.
The program-agreement problem: Given two programs, do they agree on all inputs?
Prove that the program-agreement problem is undecidable.
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Exercise 157. The total-correctness problem: Given a Hoare triple, is the triple satisfied
under total correctness?
Prove that the total correctness problem is undecidable.
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Exercise 158. The partial-correctness problem: Given a Hoare triple, is the triple satisfied
under partial correctness?
Prove that the partial-correctness problem is undecidable.
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Exercise 159. The exists-halting-input problem: Given a program 𝑃 , does there exist an
input 𝐼 such that 𝑃 halts with input 𝐼?
Prove that this problem is undecidable.
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Exercise 160. The halt-every-input problem: Given a program 𝑃 , does 𝑃 halt for every
input?
Prove that the halt-every-input problem is undecidable.
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