
Learning Goals
CS 245 Logic and Computation

Alice Gao

Contents
1 Propositional Logic 2

2 Predicate Logic 4

3 Program Verification 5

4 Undecidability 6

1



1 Propositional Logic
Introduction to logic

• Give a one-sentence high-level definition of logic.

• Give examples of applications of logic in computer science.

Propositions

• Define a proposition.

• Define an atomic proposition and a compound proposition.

Translations

• Determine if an English sentence is a proposition.

• Determine if an English sentence is an atomic proposition.

• For an English sentence with no logical ambiguity, translate the sentence into a propositional formula.

• For an English sentence with logical ambiguity, translate the sentence into multiple propositional
formulas and show that the propositional formulas are not logically equivalent using a truth table.

Well-formed formulas

• Describe the three types of symbols in propositional logic.

• Give the inductive definition of well-formed formulas.

• Determine and justify whether a given formula is well formed.

• Write the parse tree for a well-formed formula.

Structural induction

• Prove properties of well-formed propositional formulas using structural induction.

• Prove properties of a recursively defined concept using structural induction.

Truth valuation, truth table, and valuation tree

• Define a truth valuation.

• Determine the truth value of a formula given a truth valuation.

• Give a truth valuation under which a formula is true or false.

• Draw a truth table for a formula.

• Draw a valuation tree for a formula.

The meanings of connectives

• Define the meaning of the connectives: negation, conjunction, disjunction, conditional, and
bi-conditional, using truth tables.

• Understand the subtleties of the implication.

2



Properties of formulas

• Determine if a given formula is a tautology, a contradiction, and/or a satisfiable formula.

Logical equivalence

• Prove that two formulas are logically equivalent using logical identities.

• Translate a condition in a block of code into a propositional formula.

• Determine whether a piece of code is live or dead.

Circuit design

• Write down a truth table given a problem description.

• Convert a truth table to a propositional formula.

• Convert a propositional formula to a circuit diagram using AND, OR, NOT, and XOR gates.

Adequate set of connectives

• Prove that a connective is definable in terms of a set of connectives.

• Prove that a set of connectives is adequate.

• Prove that a set of connectives is not adequate.

Semantic entailment

• Determine if a set of formulas is satisfiable.

• Define semantic entailment.

• Explain subtleties of semantic entailment.

• Prove that a semantic entailment holds using the definition of semantic entailment.

• Prove that a semantic entailment does not hold using the definition of semantic entailment.

Natural deduction

• Describe rules of inference for natural deduction.

• Prove that a conclusion follows from a set of premises using natural deduction inference rules.

Soundness and completeness of natural deduction

• Define soundness and completeness.

• Prove that an inference rule is sound or not sound.

• Prove that a semantic entailment holds using the soundness and completeness theorems.

• Show that no natural deduction proof exists for a semantic entailment using the soundness and com-
pleteness theorems.

3



2 Predicate Logic
Introduction to Predicate Logic

• Give examples of English sentences that can be modeled using predicate logic but cannot be modeled
using propositional logic.

Translations
• Translate an English sentence into a predicate formula.

• Translate a predicate formula into an English sentence.
Syntax of predicate logic

• Define term.

• Define formula.

• Define free and bound variables.

• Determine whether a variable in a formula is free or bound.

• Determine the scope of a quantifier in a formula.

• Describe the problem when a variable is captured in a substitution.

• Perform substitution in a formula to avoid capture.
Semantics of predicate logic

• Define interpretation.

• Define environment.

• Determine the truth value of a formula given an interpretation and an environment.

• Give an interpretation and an environment that make a formula true.

• Given an interpretation and an environment that make a formula false.

• Determine and justify whether a formula is valid, satisfiable, and/or unsatisfiable.
Semantic entailment for predicate logic

• Define semantic entailment for predicate logic.

• Prove that a semantic entailment holds.

• Prove that a semantic entailment does not hold.
Natural deduction for predicate logic

• Describe the rules of inference for natural deduction.

• Prove that a conclusion follows from a set of premises using natural deduction inference rules.
Soundness and completeness of natural deduction

• Define soundness and completeness.

• Prove that an inference rule is sound or not sound.

• Prove that a semantic entailment holds using the soundness and completeness theorems.

• Show that no natural deduction proof exists for a semantic entailment using the soundness and com-
pleteness theorems.

4



3 Program Verification
Introduction

• Give reasons for performing formal verification rather than testing.

• Define a Hoare triple.

• Define partial correctness.

• Define total correctness.

• Determine whether a Hoare triple is satisfied under partial/total correctness by using the definition of
partial/total correctness.

• Understand why a Hoare triple with a non-terminating program is satisfied under partial correctness.

Partial correctness for assignment and conditional statements

• Prove that a Hoare triple is satisfied under partial correctness for a program containing assignment
statements.

• Prove that a Hoare triple is satisfied under partial correctness for a program containing conditional
statements (if-then and if-thenelse).

Partial correctness for while loops

• Determine whether a given formula is an invariant for a while loop.

• Find an invariant for a given while loop.

• Prove that a Hoare triple is satisfied under partial correctness for a program containing while loops.

Total correctness for while loops

• Determine whether a given formula is a variant for a while loop.

• Find a variant for a given while loop.

• Prove that a Hoare triple is satisfied under total correctness for a program containing while loops.

Partial correctness for array assignments

• Prove that a Hoare triple is satisfied under partial correctness for a program containing array assignment
statements.

5



4 Undecidability
Introduction to undecidability

• Define decision problem.

• Define decidable problem.

• Define undecidable problem.

• Prove that a decision problem is decidable by giving an algorithm to solve it.

The halting problem

• Describe the halting problem.

• Prove that the halting problem is undecidable.

Proving that a problem is undecidable by a reduction from the halting problem

• Define reduction.

• Describe at a high level how we can use reduction to prove that a decision problem is undecidable.

• Prove that a decision problem is undecidable by using a reduction from the halting problem.

6


	Propositional Logic
	Predicate Logic
	Program Verification
	Undecidability

