
Solutions for Assignment #3

CSC363

April 17, 2008

Note: The solutions are discussed in detail here. For some of the questions
your answers were not required to be as careful as these. In particular you would
get the full mark on in the first and last parts of question 3 even if you did not
write some of the finer parts of the solution.

1. The goal of this question is, assuming P = NP , given an integer n, find a
factor of n, i. e., find 1 < m < n, such that m|n.

Consider the following language

L = {〈n, l, u〉 : n, l, u ∈ N, 2 ≤ l ≤ u < n, and n has a factor between l and u}

We first prove that L is in NP . Consider the following verifier for L:

• Given input 〈〈n, l, u〉,m〉 where n, l, u,m ∈ N,

(a) Check that the input has the correct format and that 2 ≤ l ≤ u < n,
otherwise Reject.

(b) Check that l ≤ m ≤ u, if it is not Reject.

(c) Divide n by m and check that the residue is zero, i. e., m|n, if it is
not Reject.

(d) Accept.

By definition of L this is a correct verifier. To prove that it is polynomial
time not that the comparisons can be made in quadratic time in the length
of the input, so the first two steps are polynomial time. And that division
can be done in quadratic time. So the verifier is polynomial time.

If P = NP , then L ∈ P , that is a polytime decider M exists for L.
Consider the following algorithm that finds a factor of n in polynomial
time.

• Given input n ∈ N,

(a) Set l = 2.

(b) Set u = n − 1.

(c) Check that 〈n, l, u〉 ∈ L using the machine M , if it is not, output
PRIME.

1



(d) While l 6= u,

i. Set m = b l+u
2 c.

ii. Use M to check that 〈n, l,m〉 ∈ L.
iii. If it is, set u = m.
iv. If it is not, set l = m + 1.

(e) Output l.

The above algorithm is a simple binary search. We first check that n is
not prime. Then we start the for loop knowing that n has a factor in
the interval [l, u]. You can use induction to prove that this remains true
through the algorithm. That is at any point in the while loop, n has a
factor in the interval [l, u]. So when the loop ends l = u should be a factor
of n.

To prove that the above algorithm is polytime note that in each iteration of
the while loop the length of the interval [u, l] is halved. That is, (u− l+1)
at the (i + 1)th iteration of the loop is du−l+1

2 e. So the loop is run at
most dlog ne times. Assume that the running time of the M is O(xk)
where x is the length of its input. We run M with inputs of length
roughly at most 3 log n, so the running time of our algorithm will be
O((log n+1)(3 log n)k) = O((log n)k+1) which is polynomial in the length
of input, log n.

2. (a) We first show a polytime verifier for LargeSum.

• On input 〈〈S, t, b〉, T 〉. Where S is a subset of integers, t, b ∈ N
and T ⊆ S,

i. Check that T ⊆ S.
ii. Check that t > b,
iii. Sum the number appearing in T , and let their sum be x,
iv. If t ≤ x ≤ b Accept,
v. Otherwise Reject.

The verifier is correct by the definition of LargeSum. To show that
it is polytime, note that the first step takes cubic time on a single
tape TM by comparing each element of T to all elements of S and
marking the elements of S whenever they are found to be equal to
an element of T . All the other second steps take quadratic time. So
the verifier is polynomial time.
To prove that LargeSum is NP-complete we reduce SubSetSum to
it. The idea is to reduce an instance of SubSetSum, 〈S, t〉 to 〈S, t, t〉,
but in the definition of LargeSum we require that the two given
numbers are not equal. So we use the following reduction function f .

• On input 〈S, t〉.
i. Construct the set S′ each element of which is two times an ele-

ment of S.

2



ii. Output 〈S′, 2t + 1, 2t〉.
We should prove 〈S, t〉 ∈ SubSetSum if and only if 〈S′, 2t, 2t + 1〉 ∈
LargeSum.
If 〈S, t〉 ∈ SubSetSum, it means that a subset of S, say T , exists
that sums up to t. The corresponding elements in S′ are just double
the elements of T so they sum up to 2t. So there exists a subset of
S′ that sums up to 2t which is in the interval [2t, 2t+1]. This proves
that 〈S′, 2t + 1, 2t〉 ∈ LargeSum.
If 〈S′, 2t + 1, 2t〉 ∈ LargeSum, it means that a subset of S′, say T ′,
exists that sums up to 2t or 2t + 1. But, the elements of S′ are
all even so no subset of S′ can sum up to 2t + 1, so T ′ should sum
up to 2t. Now, the elements in S corresponding to these elements
in T ′ are going to sum up to half 2t which is t. This proves that
〈S, t〉 ∈ SubSetSum.
To prove that the reduction is polynomial time note that we can
multiply an element is S by adding a zero to its binary expansion so
the reduction can be computed in quadratic time.

(b) The idea in this part is to add a number of elements to S such that
any subset of S that sums up to something between t and b can be
completed to a subset that sums up to t. In order to have a correct
reduction we have to make sure that no subset that summed up to
something outside the interval [b, t] can be completed with the added
elements to a subset that sums up to t. In particular assume that
given the number d = t− b we can construct a set Xd ⊂ N with these
properties,

• The sum of the elements of Xd is d. So, the sum of elements in
any subset of Xd is between 0 and d.

• For any number between 0 and d there is at least one subset of
Xd that sums up to that number.

• The number of elements of Xd is polynomial in log d and it can
be construct in polynomial time.

If such a construction is known consider the following polytime re-
duction f from SubSetSum to LargeSum.

• On input 〈S, t, b〉,
i. Compute X = Xt−b.
ii. Output 〈S ∪X, t〉, where in union we allow for multiplicities.

Note that the first step can be computed in polynomial time by the
third property of the set Xd. Also the size of X is polynomial in
log(t− b) and each element of it is less than t− b so the second step
can be completed in time polynomial in the length of the description
of S and log(t − b). So the reduction is polynomial time.
We should prove that 〈S, t, b〉 ∈ LargeSum if and only if 〈S ∪X, t〉 ∈
SubSetSum. Assume that 〈S, t, b〉 ∈ LargeSum. This means that

3



a subset T ⊆ S sums up to a number α between b and t. Then by
the second property of X there is a subset of X lets call it U that
sums up to t − α (because t − α is at most t − b and at least 0.)
X ∪ U is a subset of S ∪ X which sums up to α + (t − α) = t, so,
〈S ∪X, t〉 ∈ SubSetSum.
Now assume that 〈S∪X, t〉 ∈ SubSetSum. This means that a subset
of S ∪ X, say T’, sums up t. Assume that T ′ is made of two parts,
T which is a subset of S and U which is a subset of X. The sum up
the elements of U (call it α) can be at most the sum of all elements
of X, which is by the first property t− b. So the sum of the elements
of T is t − α which is at least t − (t − b) = b. So T is a subset
of S that sums up to a number between t and b. This means that
〈S, t, b〉 ∈ LargeSum.
The only thing left now is to construct the set Xd for every d with
the above three conditions. We will first construct the set Xd when
d is a power of 2, say 2l for some l. X2l would be,

X2l = {1, 1, 2, 4, 8, . . . , 2l−1}.

It is clear that the sum of the elements of X2l is 2l. Furthermore, for
any number α < 2l, α can be written as the sum of powers of two
(binary representation), so α is the sum the elements of a subset of
X2l , so the first two properties hold. Also they are l + 1 elements
in X2l and it can be constructed in time O(l2), so the last property
holds.
To construct Xd for a general d. Write d in binary representation as
the sum of powers of 2 as d = 2β1 + 2β2 + · · ·+ 2βk . Let,

Xd = X2β1 ∪X2β2 ∪ · · · ∪X2βk .

By the first property of X2l the sum of the elements of d is 2β1 +2β2 +
· · ·+ 2βk so the first property holds. Also Xd has size at most k log d
which is O((log d)2) and can be constructed in cubic time using the
construction of X2l .
It remains to prove that any number α < d is the sum of the elements
of a subset of Xd. Consider the binary expansion of d and α. Because
α is less than d when you consider their decimal expansion from left
to right they should agree to some digit i − 1 and then d should
have 1 as the ith most significant bit while α has 0 as the ith most
significant bits. In other words if as above

d = 2β1 + 2β2 + · · ·+ 2βi−1 + 2βi + · · ·+ 2βk ,

where β1 > β2 > · · · > βk. We should have

α = 2β1 + 2β2 + · · ·+ 2βi−1 + α′,

4



where α′ < 2βi . But this means that by the second property X2βi

has a subset, T ′, that sums up to α′. So, we can take T ⊂ Xd to be

T = X2β1 ∪X2β2 ∪ · · · ∪X2βi−1 ∪ T ′,

and the sum of the elements of T would be 2β1+2β2+· · ·+2βi−1+α′ =
α. This proves that Xd has the second property.

3. (a) We first show that TSP is in NP. Consider the following verifier,

• On input 〈〈G, c, k〉, T 〉. Where G is a graph on n vertices with
m edges.

i. Check that T is a tour of length (number of edges) at most 2m
in G.

ii. Check that T visits all the vertices of G.
iii. Add the sum of the weights of the edges of T and check that it

is at most k.
iv. If all the checks succeed Accept,
v. Otherwise, Reject.

It is clear that all the steps run in polynomial time. Note that the
third step can take as long of the length of T but we have already
checked that the length of T is not more than 2m.
To prove that this is a correct verifier we show that the tour of mini-
mum cost can not take an twice edge in the same direction, so it has
length at most 2m. Assume that the minimum cost tour takes an
edge in the direction u → v twice. Assume that this tour has cost x
we will construct a tour of cost x− c(u, w) which is less than x. This
contradicts with the fact that this is the minimum cost tour. Assume
that the minimum cost tour is

u, w, v1, v2, . . . , vl, u, w, vl+1, . . . , vl′ .

Consider the tour

u, w, v1, v2, . . . , vl, u, w, vl′ , vl′−1, . . . , vl+2, vl+1.

It is easy to verify that this tour takes the same edges but takes the
edge u to w one less time. Thus this new tour has cost x − c(u, w)
which contradicts with the fact that we began by looking at the
minimum cost tour.1

To show that TSP is NP-complete, we reduce from Hamiltonian Cycle
using the following function,

• On input G,
i. Construct G′ which is the complete graph.

1This reasoning is one the parts that was not required from your solutions.

5



ii. Construct a weight function c as follows. Give an edge of G′

weight 1 if it is in G and weight n + 1 if it is not.
iii. Output 〈G′, c, n〉.
It is clear that this is function is polynomial time computable. We
should prove that G has a Hamiltonian Cycle if and only if 〈G′, c, n〉 ∈
TSP .
First, assume that G has a Hamiltonian Cycle. By construction, all
the corresponding edges in G′ have weight 1. So, the corresponding
cycle in G′ has weight n. This proves that 〈G′, c, n〉 ∈ TSP .
Now, assume that 〈G′, c, n〉 ∈ TSP . This means that G′ has a tour
visiting all the vertices of total weight n. As all the edges outside G
have weight n+1 this tour can only take the edges of G. So the tour
is made of n edges of G and visits all the vertices of G′ at least once
which means that it can not visit any vertex twice, so it is a cycle.
So G has a Hamiltonian Cycle.

(b) (This part became a bonus)
The optimization version of the problem is not a language so we
can not use mapping reductions for this part. Instead we give a
polynomial time decider for the NP-complete problem TSP using
a procedure that computes the optimal value of the optimization
problem.2 Lets assume that the procedure for computing the optimal
value is called M .

• On input 〈G, c, k〉,
i. call M(〈G, c〉) and let the result be k′.
ii. If k′ ≤ k Accept,
iii. Otherwise Reject.

(c) Consider the following algorithm for computing the edge set of the
tour given a decider M for the decision problem TSP .

• On input 〈G, c, k〉
i. Use M to check that 〈G, c, k〉 ∈ TSP . If it is not output NONE.
ii. let E = ∅.
iii. For all edges e in the edge set of G.

A. construct c′ = c.
B. Set c′(e) = k + 1.
C. If 〈G, c′, k〉 ∈ TSP , set c = c′,
D. Otherwise add e to E.

iv. Output E.

If the running time of M is O(nd) the running time of our algorithm
will be O((n2 + 1)nd + n3). So the algorithm is polynomial time.

2This is called a Cook reduction after prof. Cook, or a polynomial Turing reduction

6



The idea behind the algorithm is to remove the edges of the graph
and test if the resulting graph still has a tour of weight at most k.
But the input to the TSP problem is always a complete graph, so we
set the cost of the edges to k + 1. Any edge whose cost is more than
k can not be part of any minimum cost tour.
To prove the correctness of the algorithm, note that at all times in
the loop, we have 〈G, c, k〉 ∈ TSP . The end of the for loop any edge
is either in E or has cost k + 1, so there is a tour only made of the
edges in E of cost at most k. We should prove that the edges of
E form a tour of cost at most k in the graph. Assume that T is a
tour of cost at most k that is made of some of the edges in E. In
particular assume that e is an edge that is not in the tour T . When
we considered e in the for loop, the cost of none of the edges in T had
changed so changing the cost of e to k + 1 we should still have had
〈G, c′, k〉 ∈ TSP . So e should not be in E, which is a contradiction.
So the edges of T form a tour of cost at most k in the graph.

4. We show that 3SAT can be decided in linear space. Consider the following
decider for 3SAT.

• Given a 3CNF formula φ on n variables x1, . . . , xn.

(a) Set x1 = · · · = xn = false.

(b) repeat,

i. Check if the current assignment satisfies φ. If it does Accept.
Otherwise,

ii. If all xi’s are set to true break the loop.
iii. Find the first i such that xi = false. Set x1, . . . , xi−1 to false

and xi to true.

(c) Reject.

The idea of the algorithm is to check all the possible assignments to the
variables. We go over all the assignments exactly like increasing a counter.
The first step of the loop checks if the current assignment satisfies the
formula. The second step checks if we have exhausted all the assignments.
And the last step moves to the next assignment. This step is exactly like
increasing a binary counter.

The decider only needs linear space because we only need space to keep
the current assignment and to check if it satisfies the formula. Each of
these requires a linear amount of tape space.

7


