
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 9: Semi-Definite Programming
Combinatorial Optimization

Notes taken by Michael Mathioudakis

March 15th, 2007

Summary: This lecture consists of two main parts. In the first one,
we revisit Semi-Definite Programming (SDP). We show its equivalence to
Vector Programming, we prove it has efficient membership and separation
oracles and finally state a theorem that shows why Ellipsoid can be used to
acquire an approximate solution of a semi-definite program. In the second
part, we make a first approach to Combinatorial Optimization. We intro-
duce the concepts of Relaxation, Exact Relaxation and Totally Unimodular
matrices and show how the latter are used to characterize a relaxation as
exact.

1 Semi-Definite Programming

1.1 Introduction
In the previous lecture [Mos07], we introduced Semi-Definite Programming as a gen-
eralization of Linear Programming. In SDP, our feasible domain is the cone of Positive
Semi-Definite Matrices and the restrictions of the problem are given by linear inequali-
ties on the elements of a square matrix. In this lecture, we’ll see that SDP has member-
ship and separation oracles. However, SDP lacks the underlying structure of a polytope
with rational vertices, that ensured (and helped us determine) the rational solutions of
an LP. Therefore, we can use the Ellipsoid Algorithm together with the oracles, only to
acquire an approximate solution of an SDP in polynomial time.

Below, we give the formal definition of a positive semi-definite matrix, the standard
formulation of an SDP and a useful theorem that was proved in the previous lecture.

Definition 1.1. A matrix A is said to be Positive Semi-Definite (PSD) iff xT Ax ≥ 0
for every x ∈ Rn.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

In the following, we denote the symmetric matrices with n× n dimensions by Mn

and we write X � 0 to declare that X is positive semi-definite. In addition, we use the
Frobenius inner product of matrices, denoted A •B, in order to express the constraints
of the program.

A •B =
n∑

i=1

n∑
i=1

aijbij = tr(AT ·B)

Definition 1.2. The standard formulation of a Semi-Definite Program (SDP) is

minC •X
Ak •X = bk, 1 ≤ k ≤ m

X ∈ Mn

X � 0

with C, X , Ak ∈ Rn×n.

The following theorem provides alternative ways to perceive positive semi-definite
matrices.

Theorem 1.3. If A ∈ Rn×n is symmetric, then the following are equivalent:

1. A is PSD.

2. If λ is an eigenvalue of A, then λ ≥ 0.

3. There is a matrix W ∈ Rn×n, such that A = WT W .

1.2 Semi-Definite Programming and Vector Programming
Definition 1.4. A Vector Program is a program that is linear with respect to inner
products between n vectors of size n. More specifically, a Vector Program can be
formulated as follows.

min
∑

1≤i,j≤n cijv
T
i vj

∑
1≤i,j≤n

a
(k)
ij vT

i vj = bk, 1 ≤ k ≤ m

vi ∈ Rn, 1 ≤ i ≤ n.

From Theorem 1.3, we know that if we have a square matrix X with X ∈ Mn and
X � 0, then X = WT W for some square matrix W and therefore, every entry of X
can be expressed as vector inner product X(i, j) = (Wi)T ·Wj , where Wi denotes the
i-th column of W .

Now, let’s assume that we have an SDP S. We define the corresponding Vector Pro-
gram V as follows. We replace the restrictions X ∈ Mn and X � 0 with the demand
for existence of n vectors {W1,W2, . . . ,Wn} of size n, and we replace every occur-
rence of the variable entry X(i, j) with the inner product (Wi)T · Wj . Obviously, for
every feasible solution X there is a feasible solution {W1,W2, . . . ,Wn} of n-vectors

2

for V, with the same objective value. Inversely, if {w1, w2, . . . , wn} is a solution to V,
then X = WT W , with W = [w1|w2| . . . |wn] is a feasible solution of S with the same
objective value. Therefore, we have shown the next theorem.

Theorem 1.5. Semi-definite programming is equivalent to vector programming.

1.3 SDP and Ellipsoid Algorithm
Unlike Linear Programs, Semi-Definite Programs can only be solved approximately
within an additive error ε. This can be achieved by using the Ellipsoid Algorithm (see
[GLS88]) or the Interior Points Method (see [Ali95]).

As we know, Ellipsoid uses membership and separation oracles and is oracle-
polynomial. In Claim 1.6, we prove that Semi-Definite Programs have efficient (poly-
nomial with respect to the input size) membership and separation oracles (see [Vaz03]
for a slightly different proof).

Claim 1.6. Let S be a semi-definite program and A ∈ Rn×n. Then, there is a polyno-
mial algorithm that either

1. determines that A is feasible for S, or

2. provides a separating hyperplane.

Proof We can check in polynomial time whether A is not symmetric. If it isn’t, then we
can find i, j for which A(i, j) > A(j, i). Then A(i, j) ≤ A(j, i) provides a separating
hyperplane.

If A is symmetric, then, using Cholesky decomposition, we can bring it in the form

A = UT DU , D diagonal, U nonsingular

in polynomial time. We can show that A is PSD iff D is PSD. Indeed, if D is PSD, then
for every w ∈ Rn

wT Aw = wT UT DUw = (Uw)T D(Uw) ≥ 0

and therefore A is PSD, too. Vice versa, if D is not PSD, then it has a negative (diag-
onal) entry. For that entry, say Dii, we have that eT

i Dei = D(i, i) < 0. If we take
z = U−1ei, then zT Az = zT UT DUz = eT

i Dei < 0 and therefore, A is not PSD.
So, in order to check whether A is PSD it suffices to check whether D is PSD.

This can be done in polynomial time, since D is PSD iff all its diagonal entries are
non-negative. If the entry D(i, i) is negative, then for z = U−1ei we have that
zT Az = zT UT DUz = eT

i Dei < 0 and therefore (zzT) • A ≥ 0 provides a sep-
aration hyperplane.

If A is both symmetric and PSD, then we check if any of the linear constraints is
violated. This takes polynomial time w.r.t. the size of the input. If there is not a violated
constraint, then A is feasible. Otherwise, the violated constraint immediately gives a
separating hyperplane.

The fact that Ellipsoid can be actually used to efficiently approximate the solution
of an SDP is guaranteed by Theorem 1.8 (see [GLS88]).

3

Definition 1.7. Let K ∈ Rn be a convex body.

S(K, ε) = {x|d(x, K) ≤ ε}

S(K,−ε) = {x|d(x,K−c) ≥ ε} = (S(Kc, ε))c

Theorem 1.8. Let K be a convex body, such that B(C, r) ⊂ K ⊂ B(O,R), for some
K, O ∈ Rn, 0 < r < R, supplied with efficient membership oracle. Then the following
approximation can be achieved using Ellipsoid, in time poly(n, |c|, log

(
R
r

)
, log

(
1
ε

)
).

1. Find y ∈ S(K, ε), so that cT y ≤ cT x + ε for all x ∈ S(K,−ε), or

2. Assert S(K,−ε) = ∅

1.4 SDP and Interior Points Methods
Alizadeh in [Ali95] presents an interior point algorithm that converges to the solution of
an SDP in polynomial time. The approach he follows is an extension of Ye’s projective
method for LP ([Ye90]). Alizadeh’s algorithm uses the following barrier function.

Φ(X) = − log(det(X)) = − log(
∏

i

λi(x)) = −
∑

i

log(λi(x))

2 Combinatorial Optimization

2.1 Introduction
In Combinatorial Optimization problem settings, we try to find optimal solutions over a
well defined discrete space. In general, combinatorial optimization problems are given
as pairs of a set of restrictions that define the problem space and an objective function
we wish to optimize. In the rest of the course, we’ll mainly look into problems that are
NP-hard and can be formulated as Integer Programs.

Definition 2.1. The standard form of an Integer Program is

min cT x
Ax = b
x ≥ 0

x ∈ Zn.

2.2 From Integer Programs to LP
Consider the well known problem of Vertex Cover.

Definition 2.2. Minimum Vertex Cover Given a graph G = (V,E), find a set of
vertices S, such that for every edge uv ∈ E, either u ∈ S or v ∈ S.

Vertex Cover can be easily formulated into an Integer Program as follows. Notice
also that there might be more than one integer programs to a combinatorial problem.

4

Min Vertex Cover
min

∑n
i=1 xi

xi + xj ≥ 1,∀i, j ∈ E
x ∈ {0, 1}n

By looking at the integer program above, we observe that it actually suffices to demand
x ≥ 0, x ∈ Z instead of x ∈ {0, 1}n. This leads to the formulation of the following
integer program.

Min Vertex Cover
min

∑n
i=1 xi

xi + xj ≥ 1,∀i, j ∈ E
x ≥ 0
x ∈ Z

Unfortunately, Vertex Cover is NP-hard and therefore it doesn’t have a polynomial
time algorithm unless P=NP. (Notice that this shows Integer Programming is NP-hard).
It would be nice, though, if we were able to approximate it. One idea towards this end
is to drop the restriction x ∈ Z, which brings us to a problem we know well how to
deal with.

Min Vertex Cover Relaxation
min

∑n
i=1 xi

xi + xj ≥ 1,∀i, j ∈ E
x ≥ 0

The program above is a linear program and we’ll say it is a relaxation of Vertex Cover.
More formally, we give the following definition.

Definition 2.3. We say that a linear program R is a relaxation to a combinatorial
problem P, if every feasible solution of P is also a feasible solution of R and every
infeasible solution of P is infeasible for R. Furthermore, a relaxation is said to be exact,
if all the vertices of R are integral.

It’s easy to see that when an LP relaxation is exact, it achieves the same optimum
with the integer program. But how far can we fall from the optimum value of the
integer program? To characterize the ’quality’ of a relaxation we define the concept of
the integrality gap. The integrality gap of a relaxation that is exact for all instances of
a problem is equal to 1.

Definition 2.4. The integrality gap between a minimization integer program P and its
relaxation RP is defined as

sup
I instance of P

OPTP (I)
OPTRP

(I)
.

2.3 Exact Relaxations and Totally Unimodular Matrices
As another example, consider the problem of Maximum Weighted Matching.

5

Definition 2.5. Maximum Weighted Matching Given a graph G(V,E) and weights
we on the edges, find a matching M with maximum

∑
e∈M we.

The corresponding integer program is given below.

Maximum Weighted Matching
max

∑
wexe∑

e touches v xe ≤ 1,∀v ∈ V
xe ∈ {0, 1}

Similarly as with Vertex Cover, we get the following relaxation of the problem.

Maximum Weighted Matching Relaxation
max

∑
wexe∑

e touches v xe ≤ 1,∀v ∈ V
xe ≥ 0

We’ll prove that when the graph G(V,E) is bipartite, the relaxation above is exact.
Equivalently, we need to show that the polytope of the relaxation has integral vertices.
As we can see from Claim 2.7, Totally Unimodular matrices are tightly bound with this
property (see also [GLS88] and [PS98]). As it follows from their definition, a totally
unimodular matrix can have only +1, -1 or 0 as elements.

Definition 2.6. A matrix A is called Totally Unimodular if every square submatrix M
of it has det(M) ∈ {+1,−1, 0}.

Claim 2.7. If A is Totally Unimodular and b is integral, then the vertices of P =
{x|Ax = b, x ≥ 0} are integral.
Proof We know from LP that A has a submatrix A′ with full row rank so that each
solution x∗ of A′x = b′, where b′ is the corresponding subvector of b, is a solution
to Ax = b. Without loss of generality, assume A′ = (A1, A2), with A1 non-singular.
Let Mj = [A11 , . . . , A1j−1 , b

′, A1j+1 , . . . , A1m
] be the square matrix that we get by

substituting the j-th column of A1 with b′. Then, by Cramer’s rule, we have that the
j-th basic variable is given by the formula

x∗j =
det(Mj)
det (A1)

.

Since A1 is unimodular and Mj is integral, we have that x∗j ∈ Z.

This result can be extended to other matrices related with A.

Claim 2.8. If A is Totally Unimodular and b is integral, then the vertices of P =
{x|Ax ≤ b, x ≥ 0} are integral.
Proof. It suffices to prove that if A is Totally Unimodular, then A′ = (A|I) is also
Totally Unimodular. Let C be a square submatrix of A′ covering parts of both A and I.
By permuting its rows, C can be written as

C =
(

B O
D Ik

)
.

6

B can be a square submatrix of A or a singular matrix (with a zero column). It’s clear
that

det(C) = det(B) ∈ {+1,−1, 0}.

What still remains to be proved, is that if G is a bipartite graph, then its incidence
matrix is Totally Unimodular. This follows directly from the next claim. The proof
provided here is for an undirected graph G. Please consult the notes of Lecture 10 for
a different proof related with directed graphs.

Claim 2.9. An integer matrix A with aij ∈ {0, 1} is Totally Unimodular if no more
than two 1-entries appear in any column and if the rows of A can be partitioned into
two sets I1 and I2 such that if a column has two 1-entries, their rows are in different
sets.
Proof We perform induction on the size of the (square) matrices. For single matrix
entries, the claim is true by hypothesis. Now let B be any submatrix of size k.

• If B has a zero column, then det(B) = 0.

• If B has no zero columns and has a column with one 1-entry, then we can ex-
pand its determinant along that column and the result follow from the induction
hypothesis.

• If B has only columns with two 1-entries, from hypothesis we have that∑
i∈I1

aij =
∑

i∈I2
aij = 1, for every j

and therefore, we can find a linear combination of the rows that is equal to zero.
Hence, det(C) = 0.

From Claim 2.8 and Claim 2.9, it follows that the relaxation we gave for Maxi-
mum Weighted Matching is exact for bipartite graphs.

References
[Ali95] F. Alizadeh. Interior point methods in semidefinite programming with ap-

plications to combinatorial optimization. SIAM Journal on Optimization,
5(1):13–51, 1995.

[GLS88] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and com-
binatorial optimization. Springer, Heidelberg, 1988.

[Mos07] S. Mostafavi. Linear programming and combinatorial optimization - lecture
8: Interior points method and semi definite programming. CSC2411, Uni-
versity Of Toronto, 2007.

[PS98] C. Papadimitriou and I. Steiglitz. Combinatorial optimization: algorithms
and complexity. Dover, 1998.

[Vaz03] V. Vazirani. Approximation algorithms. Springer, 2003.

7

[Ye90] Yinyu Ye. A class of projective transformations for linear programming.
SIAM Journal on Computing, 19(3):457–466, 1990.

8

