
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 8: Interior Point Method and Semi
Definite Programming

Notes taken by Sara Mostafavi

March 22, 2007

Summary: In this lecture, we show how the Interior Point Algorithm ap-
proaches the optimum solution to the LP from the interior of the polytope.
Then, we introduce semidefinite programming (SDP), we discuss certain
properties of positive semidefinite matrices, and we show how an LP can
be transformed into an SDP. We conclude by providing some example SDP
problems.

1 Interior Point Method
In the last lecture, we were introduced to the Interior Point Method. The simplex
method solves linear programming problems (LP) by visiting extreme points (vertices)
on the boundary of the feasible set. In contrast, the interior point method is based on
algorithms that find an optimal solution while moving in the interior of the feasible set.
Intuitively, in each iteration of the interior point method we improve a combination of
the objective function while trying to stay away from the boundary. Since we know
that the solution to an LP lies on the boundary of the polytope, once the value of the
objective function is close to its optimum we find the closest vertex and declare it as the
optimum solution. Below we briefly review some definitions and then we will discuss
how the Ye’s Interior Point Method moves in the interior of the polytope to find the
optimal vertex.

Idea: Interior points is an iterative method similar to simplex algorithm, where it al-
ways holds a feasible solution and it attempts to improve in two different phases.
But, unlike the simplex it moves in the interior of the feasible set.

Defination: P is a feasible region,
x is ’almost optimal’ if 〈x, c〉 ≤ OPT (P)− 2−2L

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

Lemma: If x is almost optimal and if y is a BFS so that 〈y, c〉 < 〈x, c〉 then y is
optimal.

Proof: If y′ is a BFS 〈y′, c〉 < 〈y, c〉 then 〈y, c〉 − 〈y′, c〉 > 2−2L

1.1 Ye’s primal-dual Interior Point Method
The Interior Point Method (IPM) described here is a primal-dual method, that is, it
solves both the primal and dual at the same time. This method makes use of the duality
gap as described below. Consider the following LP in the primal form:

min 〈c, x〉
s.t Ax=b

x ≥ 0

The dual is given by:

max 〈b, y〉
s.t yA ≤ c

y ≷ 0

We can add a slack variable S to the dual and write it in standard form:

max 〈b, y〉
s.t yA +S = c
y ≷ 0, s ≥ 0

The Interior Point Method holds (x,s) as a solution. Thus, IPM traverses through the
solutions (x0, s0) −→ (x(1), s(1)) −→ . . .

Definition 1.1. For a pair of solutions to primal P and dual D, the quantity 〈s, x〉, called
the duality gap, gives us a bound on how far we are from the optimum solution for the
primal-dual pair.

To see this, let x and (y, s) be solutions to primal and dual program, then

〈c, x〉 − 〈s, x〉 = 〈c− s, x〉 = yAx = 〈y, b〉

so 〈c, x〉 − 〈y, b〉 ≤ 〈s, x〉. Thus, 〈s, x〉 is an upper-bound on the distance of 〈c, x〉
from the optimum of the primal which by duality theorem is at least 〈y, b〉.

The primal-dual potential function, describe below, (i) measures the distance of a fea-
sible pair (x,s) to the boundary and (ii) gives an indication about the duality gap.

The primal-dual potential function G(x, s) associated with a primal-dual LP is defined
as:

G(x, s) = (n +
√

n) ln(〈x, s〉)−
∑

i

ln(xi, si)

2

The first term measures the duality gap 〈x, s〉, the more negative it is, the smaller the
duality gap. The second term, −∑

i ln(xi, si), measures the distance to the boundary
of the feasible set, the more positive it is the closer we are to the boundary of the
feasible set. The potential function exhibits the trade off between closeness to the
boundary and the size of the duality gap. The parameter (n+

√
n) can be thought of as

the tuning parameter. In fact, we claim that if G(x, s) is small enough then x is almost
optimal.

Claim 1.2. if G(x, s) ≤ 2
√

nL then x is “almost optimal”

proof It is enough to show that if G(x, s) ≤ 2
√

nL⇒ 〈x, s〉 < 2−2L since 〈x, s〉 is an
upper bound on the distance of 〈x, c〉 to the optimum when x is the optimal solution.

G(x, s) =
√

n ln(〈x, s〉) + [n ln(〈x, s〉)−∑
ln(xisi)]

The term in the brackets are≥ 0 by Jensen’s inequality because of the concavity of
the logarithm function.

ln(〈x, s〉) = ln(
∑

xisi) = ln(n 1
n

∑
xisi) ≥ ln(n) + 1

n

∑
ln(xisi)

n ln(〈x, s〉) ≥ n ln(n) +
∑

ln(xisi)

n ln(〈x, s〉)−∑
ln(xisi) ≥ n ln(n) ≥ 0

therefore,

2
√

nL ≥ G(x, s) ≥ √
n ln(〈x, s〉) and so e−2L ≥ 2−2L ≥ 〈x, s〉 .

1.2 An Overview of the Algorithm
The overall goal of the algorithm is to obtain, at each iteration k, a set of feasible
solutions (x(k), s(k)) that reduce the potential function G(x, s) by a constant positive
amount. We have shown how one can use the duality gap and the potential function to
measure the “optimality” of a solution, the remaining goals are to show that:

• we can start with an initial solution w = (x, s) for which G is not very large

• we can reduce the value of G in n iterations.

.
One way to decrease the potential function, G, is to fix s and move x in a manner

that follows the opposite direction of g, the Gradient of the potential function G with
respect to x as evaluated at (x(i), x(i)). First, lets assume that x(i) is the one vector 1,
i.e. x(i) = 1.

g = ∇xG(x, s)
∣∣∣
(x(i),s(i))

=
n +

√
n

〈x, s〉 s−




1/x1

...
1/xn




∣∣∣∣∣
(x(i),s(i))

=
n +

√
x∑

si
s− 1

3

We cannot simply move x(i) in the direction of −g since A(x(i) − εg) = b − εAg is
generally not equal to b, i.e. x(i) − εg is not feasible. Consequently, the step must be
restricted to the nullspace of A to satisfy the constrains.

Ax(i) = b

A(x(i) − εd) = b

Ax(i) − εAd = b ⇒ Ad = 0

So we move in the direction opposite of d where d is the projection of g onto the
nullspace of A.

d = (I −AT (AAT)−1A)g

Now, we need to determine the size of the step in direction −d. Let the size of the step
be 1

4 x(i+1) ≥ 0

x(i+1) = x(i) − 1
4

d

‖ d ‖2
x

(i+1)
j = 1− 1

4
d

‖ dj ‖2 ≥
3
4

s(i+1) = s(i)

It can be shown that if ‖ d ‖2≥ 0.4, then G(x(i), s(i)) − G(x(i+1), s(i + 1)) ≥ 7
120

(see [1] for a proof). Up to now we assumed that x(i) = 1, we now show how we can
transform the problem by a linear transformation ,X̂ , so that x′ = X̂−1x = 1,

X̂ =




x̂1

. . .
x̂n




Let Â = AX̂ and ĉ = cX̂ . Then, the transformed problem is given by:

min〈ĉ, x′〉
Âx′ = b
x′ ≥ 0

In the dual, the transformation is S → X̂s, so x′js
′
j = xjsj and G is related to x and s

through xjsj . Now we provide a pseudocode for IPM:

Algorithm 1.3.
Primal-dual interior point method

Input: m,n ∈ N, ε > 0 and A ∈ Rm×n, b ∈ Rm and initial x(0), y(0), s(0) such that
Ax(0) = b, x(0) > 0, y(0)T A + s(0)T = cT , s(0) > 0.
Output: A feasible pair (x(k), s(k)) such that s(k)T x(k) < ε

while(s(k)T x(k) < ε)

4

1. Transform the feasible solution with respect to x(k)

x′(k) = X̂−1x(k) = 1, s′(k) = X̂s(k), A′ = AX̂.

2. g ← n+
√

x(k)
∑

s
(k)
i

s(k) − 1

3. d ← (I −A′T (A′A′T)−1A′)g

4. if ‖ d ‖2≥ 0.4, then do a primal step x′(k+1) ← 1− 1
4‖d‖2 d

else do a dual step: s′(k+1) ← s′T 1
n+
√

n
(d + 1)

5. Transform the solution back to the original domain
x(k+1) ← X̂x′(k+1), s(k+1) ← X̂−1s′(k+1)

6. k ← k + 1

To summarize, Ye showed that:

1. An initial solution (x(0), s(0)) can always be constructed such that G(x(0), s(0)) =
O(
√

n)

2. The algorithm requires O(
√

nL) iterations for the duality gap 〈x, s〉 to be mini-
mal, that is, to find an optimal x.

The IPM present a polynomial linear programming algorithm which is competitive with
the simplex algorithm and it tends to perform better than simplex on large, massively
degenerate problems. Furthermore, in each iteration of the IPM the most computational
expensive step is the computation of the projection, d, of the gradient which requires
O(n3) operations.

2 Semi-Definite Programming

2.1 Introduction
Semidefinite programming (SDP), an extension of LP, is a relatively new field in opti-
mization which has gained extensive popularity for several reasons. First, many practi-
cal problems in operations research and combinatorial optimization can be modeled or
approximated as semidefinite programming problems. Furthermore, SDPs are a special
case of cone programming and can be efficiently solved by interior point methods.

2.2 Review of LP
Lets first review some properties of LP which will give us an intuition about SDPs.Consider
the following LP in standard form:

LP: min 〈c, x〉
s.t. aix = bi, i = 1, . . . , m

x ≥ 0

5

Here x is a vector in (R+)n and ai is the row of matrix A, (R+)n = {x ∈ Rn|x ≥ 0},
we call (R+)n the non-negative orthand. K = (R+)n is called a closed convex cone.

Definition 2.1. K is called a closed cone if it satisfies the following properties:

• if x, y ∈ K, then αx + βy ∈ K for all scalar s α, β ≥ 0.

• K is a closed set.

Now we can re-write the definition of LP as:

LP: min < c, x >
s.t. aix = bi, i = 1, . . . , m

x ∈ (R+)n

2.3 Properties of positive semidefinite matrices
Definition 2.2. An n× n matrix X is positive semi-definite (PSD) if

aT Xa ≥ 0, ∀a ∈ Rn

Lemma 2.3. The following are equivalent:

1. n× n matrix X is PSD

2. all eigenvalues of X are non-negative

3. there is an n× n matrix M so that MMT = X

proof
3 ⇒ 1: If (3), then ∃M ∈ Rn×n, and ∀a ∈ Rn we have:

aT Xa = aT MMT a = ||Ma||22 ≥ 0

1⇒ 2: Let λ be an eigenvalue of X ∈ PSDn and let a be its corresponding eigenvector,
then we have Xa = λa, so:

aT λa = λ||a||22 = aT Xa ≥ 0

2 ⇒ 3: First we recall that if X is symmetric then we can write X = UDUT for some
orthonormal matrix U and some diagonal matrix D, where U is orthonormal means
that U−1 = UT . Now, if X = UDUT with orthonormal U and diagonal D then
columns of U form a set of n orthogonal eigenvectors of X , whose eigenvalues are the
corresponding diagonal entries of D. By (2) all of the eigenvalues of X are positive,
then, we can write:

D =
√

D
√

D

X = (UT
√

D)(
√

DU)

X = (
√

DU)T (
√

DU)

X = MMT , M = (
√

DU)

6

Remark 2.4. How do we decompose X? We note that we can diagonalize a symmetric
matrix using symmetric row and column operations:




1 3 0
3 11 2
0 2 5


 R2=R2−3R1−→




1 3 0
0 8 2
0 2 5


 C2=C2−3C1−→




1 0 0
0 8 2
0 2 5




We notice that rows and column operations are obtained by modifying I and multi-
plying from left or right:




1 0 0
−3 1 0
0 0 1







1 3 0
3 11 2
0 2 5







1 −3 0
0 1 0
0 0 1




Thus we note the decomposition of X can be done efficiently.

Note that if X is a PSD, then ∀ a ∈ Rn, aT Xu ≥ 0: ⇒ aT UT DUa ≥ 0, ∀a ∈
Rn ⇒ wT Dw ≥ 0∀w ∈ Rn

Since X = MMT =



−− v1 −−
−− v2 −−
−− v3 −−







| | |
v1 v2 v3

| | |




then Xij = 〈Mi:,M
T
:j 〉 = 〈Mi,Mj〉 = 〈vi, vj〉. This indicates that we can think

of each element xij of X ∈ PSDn as the value of dot product between two vector
〈vi, vj〉. X can be represented by n vectors so that vij is 〈vi, vj〉, this is called a Gram
product of v1, . . . , vn.

2.4 Semidefinite Programs
If X ∈ PSDn we can think of X as (1) a matrix of n × n or (2) as a vector with
n2 components (i.e. vec(X) = (x11, x12, . . . , xnn)). A semidefinite program can be
defined as an optimization problem as follows:

SDP:
min C •X

s.t AiX = bi, i = 1, . . . ,m
X ∈ PSDn

Where X, C, Ai are n × n matrices and C •X denotes the matrix inner product such
that C •X =

∑
i,j cijxij . This definition of matrix inner product is equivalent to the

vector inner product of the vectorized version of X and C which have n2 elements.

Example 2.5.

min
∑

xij

x11 + 2x13 + 16x23 = 0
4x12 + 6x22 + 4x33 = −2

(x) ∈ PSD3

7

In this example C =




1 1 1
1 1 1
1 1 1


 and A1 =




1 0 2
0 0 16
0 0 4




Example 2.6. Given the following matrix:

X =




5 ? ?
−3 4 ?
? ? ?




complete X (i.e fill out the ? entries) such that A ∈ PSD3 and sum of off diagonal
entries is minimize.

min
∑

i 6=j xij

s.t x11 = 5, x21 = −3, x22 = 4
X ∈ PSD3

Equivalently, we can write the above in matrix form:

min




1 1 1
1 1 1
1 1 1


 •X




1 0 0
0 0 0
0 0 0


 •X = 5,




0 0 0
1 0 0
0 0 0


 •X = −3,




0 0 0
0 1 0
0 0 0


 •X = 4

X ∈ PSD3

We note that SDP looks very similar to an LP with a few differences: (1) the standard
LP constraint that x ∈ R+n is replaced with the constraint that X (which can also be
thought of as a vector with n2 components) must lie in cone of positive semidefinite
matrices.In fact, LP is special case of SDP. Here is how we transform an LP in standard
form into an SDP problem:

LP =⇒ SDP

min〈c, x〉 =⇒ min




c1 0
. . .

0 cn


 •X

〈ai, x〉 = bi, i = 1, . . . ,m =⇒




a
(1)
i 0

. . .
0 a

(n)
i


 •X = bi, i = 1, . . . , m

x ≥ 0 =⇒ X ∈ PSDn, Xij = 0,for i 6= j

8

Remark 2.7. We have shown that we can transform an LP to an SDP. In fact, LP is a
special case of SDP and an SDP can be thought of as an LP which has infinitely many
inequality constrains:

∀a aT Xa ≥ 0 ⇐⇒ ∀a (aaT) •X ≥ 0

where aaT is the outer product of vector a.

X is PSD is equivalent to the following stating that all principle minors of X ,
Λ1, . . . , Λn have non-negative determinants (i.e. det Λi > 0, i = 1, . . . , n). The ith

principle minor of X , denoted as Λi is formed by the first i rows and columns of X .
Thus, the first principle minor of X is just x11.

Now we present an example that gives us an intuition about the geometry of a set of
feasible solutions to an SDP.
eg.

Example 2.8. X ∈ PSD, X =




1 x y
x 1 0
y 0 1




Denoting that all the principle minors are non-negative, we write the constrains as
follows:

1 ≥ 0
1− x2 ≥ 0

1− x2 − y2 ≥ 0

We notice that x2 ≤ 1 is redundant in the context of 1 − x2 − y2 ≥ 0, so we can
summarize the above constraints by the following constraints: x2 + y2 ≤ 1 which is a
circle in R2. Thus, the geometry of the feasible set is not a polyhedron.

Example 2.9. Given two set of point in Rn, P = {p1, . . . , pr} and Q = {q1, . . . , qs}
find an ellipsoid which has centre at origin and includes all points in pi ∈ P and
excludes all point qi ∈ Q (we allow qi to lie on the boundary of the ellipsoid). Figure 1
shows points in p′is as circles and q′is as x.

First recall that an ellipse in Rn, centered at the origin, is defined by {x|xtAx ≥
1, A ∈ PSDn}

We want to find the solution to SDP with the following constrains:

∀pi, p
T
i Xpi ≥ 1

∀qi, q
T
i Xqi ≤ 1

X ∈ PSD

References
[1] G. Meinsma. Interior point methods. Mini course, Spring 1997.

9

Figure 1: An example SDP problem

10

