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Summary: This lecture introduces the Ellipsoid Method, the first polynomial-
time algorithm to solve LP. We start by discussing the historical signifi-
cance of its discovery by L. Khachiyan. Next, we argue that the ability
to decide the feasibility of a version of the constraints of an LP is as hard
as solving the LP. To gather the intuition behind the Ellipsoid Method, we
draw an analogy with a problem of finding a large creature in a constrained
space. Through this analogy, we formulate 3 “ingredients” that we require
of the potential algorithm that will find this creature. Next, we show that
each of these ingredients exists for the feasibility problem we are solving.
Finally, we discuss the need for ellipsoids as the bounding volumes used
to locate the feasible set. As a result, we are able to sketch the pseudocode
of the Ellipsoid Method, whose correctness and polynomial time complex-
ity is demonstrated. As preparation for the upcoming lecture, we consider
expressing an ellipsoid using a positive semi-definite matrix.

1 Historical Background

The only algorithm for solving linear programming (LP) problems we have seen thus
far is the Simplex Algorithm. We have also shown that this algorithm has exponential
running time for certain rather contrived examples (due to Klee and Minty, 1972). We
know that LP is in the complexity classNP (a solutionx can easily be checked to
satisfy a corresponding decision problemAx = b, x ≥ 0, 〈x, c〉 ≤ λ in polynomial
time). Moreover, LP is in the class co-NP (as the solution to the dual decision problem
can also be verified in polynomial time). It is conjectured thatP = NP∪ co-NP, in
other words, that problems such as LP have polynomial time algorithms. However, it
was not until 1979 that such an algorithm was discovered. Due to the Soviet mathe-
matician Leonid Khachiyan, theellipsoid methodis of an entirely different nature than
the combinatorial simplex algorithm and has roots in nonlinear optimization. However,
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for practical purposes, the simplex method remains superior to the ellipsoid method on
average; in fact, the expected running time of the simplex method is polynomial and
faster than the expected running time of the ellipsoid method [1].

2 Starting Point

As we will see, the ellipsoid method is onlyweaklypolynomial, as the number of
operations of the algorithm is polynomial in the size,L, of the problem, whereL =
n ·m + dlog |P |e, andP is the product of the non-zero coefficients inA, b andc 1.

Consider the LP in standard form:

min〈c, x〉

Ax = b, x ≥ 0.

Instead of solving this program, we are simply going to determine the feasibility of
a program of linear inequalities (LI),

Ax ≤ b.

If we were able to determine the feasibility ofAx ≤ b, we could determine the
feasibility ofAx ≥ b, Ax ≤ b, x ≥ 0, i.e. check that the LP is feasible. Next we would
check that the objective function is bounded by checking if〈c, x〉 ≤ −22L − 12. Now
that we know that the LP is feasible and bounded, we can performbinary searchon
the values ofa in Ax ≥ b, Ax ≤ b, x ≥ 0, c′x ≤ a to look for the optimal BFŜx in
time proportional toL. The search uses the lower bound on the difference between 2
BFSs to decide when to stop. (Actually, we find the basis that corresponds tox̂ and
then invert the corresponding matrix to findx̂.) For a more detailed discussion, please
see [3]. Therefore, a polynomial-time solution to LI gives a polynomial-time algorithm
for LP. This also means that the complexity of the initialization stage of the Simplex
method is same as that of the method in total.

We are still not quite ready for the ellipsoid method. Instead of determining the
feasibility ofAx ≤ b, we are going to determine the feasibility ofA′x < b′ (with strict
inequality in every coordinate) for someA′, b′ possibly different fromA andb.

Note that takingA = A′ andb = b′ doesn’t usually work. Consider for example

A =

 1 0
0 1
−1 1

 andb =

 2
3
−5

. In this example, the only possible assignment

of x is one that results in an equality. Therefore, we need to add some slack to theb’s,
i.e. consider

Ax < b + ε = b +

 ε1
...

εn

 = b′.

1It may be necessary to normalize the coefficients first to be integers. The effect of this operations is
easily reversed once the solution is available.

2Note that this is the answer to question 1 of assignment 2.

2



Lemma 2.1. Ax ≤ b is feasible iffAx < b′ is feasible.

Proof. (⇒) This direction clearly follows.
(⇐) Consider the contrapositive, i.e. show thatAx ≤ b is not feasible⇒ Ax < b′ is
not feasible.

Applying Farkas’ Lemma, the above statement is equivalent to:

∃y ≥ 0 such thatyA = 0 and〈y, b〉 < 0 ⇒ 〈y, b′〉 < 0.

〈y, b〉 < 0 may be scaled positively to become〈y, b〉 = −1. We verify this statement
by checking that they that satisfies the left-hand side also satisfies the right-hand side.

Let
−→
1 =

 1
...
1

.

〈y, b′〉 = 〈y, b〉+ ε〈y,
−→
1 〉

= −1 + ε〈y,
−→
1 〉

≤ −1 + εn22L,

where the last inequality follows becausey is a BFS and in the worst case all the
coordinates ofy meet the maximum. By takingε < 1

n22L , we get〈y, b′〉 < 0, as
desired.

Therefore, we can conclude that to solve a general LP, it is enough to answer the
question, “isAx < b feasible?”.

3 Detour through paleontology

Suppose you are a daring paleontologist, looking to challenge your colleagues’ theory
that mammoths did not inhibit Antarctica. You travel to the South Pole and check
whether a frozen mammoth is present there. If it is, you are done. If it is not, you
are supplied with a dividing line through the South Pole and a guarantee that on one
side of this line there is no mammoth3. You continue the search in the remaining part
of Antarctica, first checking a location in this remaining territory and, if unsuccessful,
dividing the remaining space with a line and as before, using the knowledge that a
mammoth does not lie to one side of this line to decrease your search space. You
continue this process until you find the mammoth, or until you reach a point when the
space you are left with could not fit such a large creature. Refer to Figure 1 for an
illustration.

Observe that the following “ingredients” are necessary for the method to work:

1. The initial search space (i.e. Antarctica) is relatively small

2. You have a lower bound on the size of the desired object (the mammoth)

3Suppose that a “guiding spirit”, or an “oracle” is supplying this information
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Figure 1: The problem of finding a mammoth in Antarctica.

3. You have a way to pick the next search space that will have the following prop-
erties

• It always contains the desired object (mammoth), if it exists.

• Its area is considerably smaller than the area of the previous search space.

• The search space can be easily represented and maintained.

4 The intricate connection between finding mammoths
and locating feasible sets

We are interested to know whether the set{x|Ax < b} is non-empty. We know that
if it is, it must exist in a reasonably limited area. Namely, ifAx < b is feasible and
bounded,|xi| < 22L∀i. In other words, the feasible region exists inside a hypercube
centered at the origin with side lengths2 × 22L. In case{x|Ax < b} is unbounded,
the above hypercube would contain any BFS of the problem, if they exist. For a formal
discussion of the issue of an unbounded feasible set, refer to page 33 of [3]. Also refer
to Figure 2 for clarification. Therefore, we have a bound on the initial search space
(ingredient 1). In fact, instead of considering the cube discussed above, we are going
to be working with the ballB = {‖x‖ ≤ 22L } centered at the origin that is enclosed
in this cube. If{x|Ax < b} 6= ∅, {x|Ax < b}

⋂
B 6= ∅.

Now we seek a lower bound on the volume ofP = {x|Ax < b, |xi| < 22L∀i}
(ingredient 2). SinceP is an intersection of strict inequalities, it is an open set (i.e.
around any point inP there is anε-ball in P ) and so, it is of full dimension. Hence
vol(P ) > 0 ⇔ P 6= ∅. However, we are looking for a more useful lower bound on
vol(P ).

Lemma 4.1. P 6= ∅ ⇒ vol(P ) > 2−n2−2nL
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Figure 2: The feasible region is contained inside a cube. In case it is unbounded (right),
a part of this region is still contained in the cube. Image adopted from [4].

Proof. Instead ofP , let’s consider the closure ofP , P̄ . This is valid since vol(P̄ ) =
vol(P ). As P is of full dimension inRn, if P is non-empty, there aren + 1 affinely
independent BFSs inP 4, S = {v0, . . . , vn}. By the convexity ofP and using the
formula for the volume of a simplex with verticesS,

vol(P ) = vol(P̄ ) ≥ vol(conv(S)),

vol(conv(S)) =
1
n!

∣∣∣∣det
(

1 . . . 1
v0 . . . vn

)∣∣∣∣ .

As we are assuming that the volume is non-zero, the determinant is non-zero and the
volume can be lower-bounded using the inverse of the absolute value of the maximum
denominator achievable,2−2L, as follows:

vol(conv(S)) >
1

n!2n2L

≥ 2−n2−2nL,

using the fact thatn! ≤ 2n2
and since the determinant of a matrix is a sum of terms

that are each a product ofn− 1 terms having denominators at most22L

since we showed that the denominators ofvi are upper bounded by2L in assign-
ment 1, question 3, and using the bound onn! also shown in the solution to this ques-
tion.

Now we need to satisfy ingredient 3. We start by checking the centrex0 of the
ball B. If x0 is feasible, we know thatP is feasible and stop. Ifx0 is not feasi-
ble, we know there is at least one inequality〈ai, x〉 < b′i that is violated atx0, i.e.
〈ai, x0〉 ≥ b′i, and it is easy to find. So, this means that we can restrict our search space
to 〈ai, x〉〉b′i. Formally, if we know that our search spaceE ⊂ P = {x|Ax ≤ b}, then
({x|〈ai, x〉 < bi}

⋂
E) ⊃ P , wherei is the index of the inequality that is violated.

This gives us the considerable reduction in search space required.

4This means that thesen + 1 points generate an affine space of dimensionn in P . They must exist,
because asP is the convex hull of its BFSs, if there are fewer thann + 1 affinely independent BFSs,P
would not be of full dimensionn.
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5 Towards ellipsoids

If the original regionE is a sphere, then{x|〈ai, x〉 < bi}
⋂

E is a half-sphere. If
we insist on using only spheres as our bounding body, then the sphere that bounds
{x|〈ai, x〉 < bi}

⋂
E is E and we get no reduction in search space size. We must

move toward a bounding body that has more flexibility.

Observation 5.1. If E is an ellipsoid and1
2E is a “half-ellipsoid” 5, then∃E′ ⊃ 1

2E

so thatvol(E′) ≤ e−
1
2n vol(E).

Proof. The proof of this observation in [2] is technical and lengthly. [3] shows a
slightly different bound, but with a more elegant presentation.

6 The algorithm sketch

Algorithm 6.1 (The Ellipsoid Method).

Input: A, b, Volume Lower Bound (V LB) = 2−2nL−n2
, radius of the initial ballR =

22L, E0 = B(0, R), the ball centered at0 with radiusR.

Output: A declaration on the feasibility of{x|〈ai, x〉 < bi∀i}

E = E0.

while vol(E) > V LB,

if y = centre(E) is feasible by each of them inequalities.

Declare “feasible”. Stop.

elseFind inequalityi such that〈ai, y〉 ≥ bi.

Let E′ be an ellipsoid that containsE
⋂
{x|〈ai, x〉 ≤ bi} and vol(E′) <

e−
1
2n vol(E).

E = E′.

Declare “not feasible”. Stop.

Refer to Figure 3 for an intuitive illustration of the algorithm.

6.1 Correctness

If the algorithm declares “feasible”, we have a feasible point inP , y. If the algorithm
declares “not feasible”, it is because vol(E) < V LB, and we have already shown in
Lemma 4.1 that ifP is feasible, then its volume is lower-bounded by2−2nL−n2

.

5A half-ellipsoid is the intersection of an ellipsoid with a half-space through its centre
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Figure 3: The ellipsoid method converging on the feasible region. The blue points
are centres of ellipsoids considered that are not inside the feasible region. The last
ellipsoid considered is centered at the green point, which is inside the feasible region.
The dashed line corresponds to the unsatisfied inequality for the centre of the next-to-
last ellipsoid. Image from [5].

6.2 Running Time

The volume ofE0 is upper-bounded by the volume of the n-dimensional cube having
side lengths22L+1. We also know that the final volumeE is lower-bounded byV LB.
Therefore,

initial volume < 2(2L+1)n

final volume ≥ 2−2nL−n2

If T iterations are required to determine the feasibility ofP ,

final volume× (e
1
2n )T ≤ initial volume.

Now we solve forT :

T = log
e

1
2n

(
initial volume
final volume

)

'
log 2(2L+1)n

2−2nL−n2

log e
1
2n

= O(nL + n2)2n

= O(n2L + n3)

Therefore, the ellipsoid algorithm performs a polynomial number of iterations as a
function ofn.
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7 Ellipsoids and semi-definite matrices

Consider the unit ball at the origin:B(0, 1) = {x|‖x‖ ≤ 1}. Let T be an affine
transformationT : x → Ax + z. The image ofB(0, 1) underT is an ellipsoidE =
{y|y = Ax + z, ‖x‖ ≤ 1}. Sincex = A−1(y − z),

y ∈ E ⇔ ‖A−1(y − z)‖ ≤ 1
⇔ (y − z)t(A−1)tA−1(y − z) ≤ 1
⇔ (y − z)tQ−1(y − z) ≤ 1,

whereQ = AAt, a positive, semi-definite matrix. Ifz = centre(E) andQ = I, then
E = B(z, 1). If Q =

√
rI, thenE = B(z, r).
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