
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 12: The Lift and Project Method

Notes taken by Stefan Mathe

April 28, 2007

Summary: Throughout the course, we have seen the importance of ob-
taining relaxations of integer problems that are as tight as possible in terms
of their integrality gap. The ”lift and project” method is introduced, which
builds such relaxation in a systematic fashion. The method is illustrated
on the familiar Vertex Cover problem. Some complexity results from the
literature are summarized in the end.

1 Motivation
The second half of the course has concentrated on relaxations and using them to come
up with approximation algorithms. The answer one gets may depend on the relaxation
used, and one can attempt to strengthen the relaxation to get a better approximation.

Let us look at a particular instance of this process. Recall the relaxation of the
Vertex Cover Problem problem:

min
∑
i∈V

xi

s.t.

xi + xj ≥ 1, i, j ∈ E(G)

0 ≤ xi ≤ 1

In lecture 10, section 3, we have shown that this problem has an integrality gap of 2
(the complete graph is one instance in which this worst case integrality gap is attained).

A natural question to ask at this point is whether there is a way to tighten this
relaxation up so that the integrality gap is reduced. In the following section, we shall
revisit one such attempt to relaxation.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

2 Odd-cycle constraints
One candidate tightening we might try has been explored in Assignment 3, namely
adding odd-cycle constraints.

The idea is to add one constraint for each odd cycle in the graph, which imposes
that the sum of the values assigned to all the vertices in an arbitrary cycle C be lower
bounded by half of the length of the cycle plus one. Formally, the linear problem
becomes:

min
∑

i∈V (G)

xi

s.t.

xi + xj ≥ 1 ∀i, j ∈ E(G) (edge constraints)∑
i∈C

xi ≥
|C|+ 1

2
∀C odd cycle in G (odd cycle constraints)

xi ≥ 0 ∀i ∈ E(G) (non-negativity constraints)

To see the motivation behind adding these constraints, let us consider the case of a
triangle. Clearly, in the integral case, we have to select at least two of the vertices to
cover all the edges. Consider just having the edge constraints for the triangle:

x1 + x2 ≥ 1
x2 + x3 ≥ 1
x1 + x3 ≥ 1

We can try to derive a constraint for the entire triangle by adding the inequalities
above and diving by 2, which leads to:

x1 + x2 + x3 ≥ 1.5

This is clearly a weaker constraint than the odd-cycle constraint for the triangle,
which is:

x1 + x2 + x3 ≥ 2

Hence the odd cycle constraint is a strengthening of the relaxation that holds in the
integral case.

Alas, it can be shown that the integrality gap with odd-cycle constraints is still 2.

2

3 Lift and project for Vertex Cover
The choice for adding odd-cycle constraints was ad-hoc, and there are many other
ways to relax the problem (in fact, the number of possible constraints we could add
is exponential - this follows from the NP-Completeness of vertex cover, see [Tou06],
page 12).

In what follows, we shall investigate a systematic way of building relaxations to
the Vertex Cover problem. In this section, we shall begin with a relaxation of Vertex
Cover as an illustrative example for the method. In the next section, we shall formally
define the method in the general setting.

3.1 Vertex Cover as a Quadratic Program
The starting point is the observation that we can write Vertex Cover as a quadratic
program. Remember that Vertex Cover is an integer program. Hence we must start by
imposing the constraint that xi ∈ {0, 1}. This can easily be achieved by adding the
following quadratic constraints:

xi(1− xi) = 0, ∀i ∈ V (G)

Clearly, only values in the set {0, 1} satisfy the above constraint.
We can also transform edge constraints into quadratic inequalities using a similar

strategy:

(1− xi)(1− xj) = 0, ∀i, j ∈ E(G)

This leads us to the following quadratic program (after performing the multiplica-
tions):

min
∑

i∈V (G)

xi

s.t.

xi − x2
i = 0 ∀i ∈ V (G)

1− xi − xj + xixj = 0 ∀i, j ∈ E(G)

Since this quadratic program is an equivalent description of Vertex Cover, we know
that we cannot hope to solve it in polynomial time.

3.2 Lifting the dimensionality
The next step is to relax this quadratic program to get a linear program. This can be
achieved by replacing each term of the form xixj with a new nonnegative variable yij .
The resulting linear problem is:

min
∑

i∈V (G)

xi

3

s.t.

xi − yii = 0 ∀i ∈ V (G)
1− xi − xj + yij = 0 ∀i, j ∈ E(G)

xi ≥ 0 ∀i ∈ V (G)
yij ≥ ∀i, j ∈ E(G)

This is a linear relaxation problem that has n + n2 variables. One question to ask
is whether this relaxation is stronger or weaker than the straightforward relaxation of
Vertex Cover? It easy to see that for each edge i, j we have:

xi + xj = 1 + yij ≥ 1

Hence by first rewriting vertex cover as a quadratic program and the performing
relaxation in the manner presented above we have gained something, namely that we
have obtained a stronger relaxation.

Can we impose more constraints on the yij variables? One immediate method that
comes to mind is:

yij = yji ,∀i, j ∈ V (G)

Notice that this constraint does not influence the solution in the case of Vertex
Cover (because for each pair i, j ∈ V (G), at most one of the variables yij and yji

appears in the constraints), but there are other combinatorial problems where adding
these constraints further tightens the resulting relaxation.

3.3 Semidefinie programming variant
We can tighten the relaxation we presented before even further, by imposing that the
matrix Y = (yij) formed by the variables yij be PSD. Of course, this will move us out
of the linear programming domain into the semidefinite programming realm:

min
∑

i∈V (G)

yii

s.t.

1− yii − yjj + yij = 0 ∀i, j ∈ E(G)
Y ∈ PSD(n)

To see the motivation behind this is constraint, remember that yij are supposed to
represent exactly, in the integral setting, the product xixj . In matrix form, this would
mean that:

4

Y = xT x

where x is the column vector formed by stacking the scalars xi, i ∈ V (G). This
equality implies that Y is PSD.

4 Lift and project in the general setting
The example shown in the previous section illustrates the steps involved in the method:

1. Starting with an integer program, we build a quadratic program out of it.

2. We replace products with novel linear variables, thus lifting the dimensionality

3. We add constraints on these linear variables (e.g. symmetry in the case of the
linear programming variant, or PSD-ness in the case of the semidefinite pro-
gramming variant)

4. We solve the resulting system and we project back to the original lower dimen-
sional space

Let us now show how these steps work in the general setting.

4.1 Homogenizing the constraints
We start with an integer program:

min
x

cT · x

s.t.

Ax ≥ b

x ∈ {0, 1}n

In the subsequent endeavor, it will be convenient to homogenize the equations. We
do this by introducing a supplementary variable x0 which will always have the value 1
in a feasible solution. The domain becomes:

Ax ≥ b · x0

x ∈ {0, 1}n
, x0 = 1

Which can be rewritten in matrix form as:

[
A −b

] [
x
x0

]
≥ 0

x ∈ {0, 1}n
, x0 = 1

5

and further, using some notation for succinctness:

A′x′ ≥ 0
x′ ∈ {0, 1}n+1

, x0 = 1

Whenever we use x′, we mean the column vector x concatenated with the value
x0.

4.2 Quadratic programming
We now rewrite the integer program in quadratic form. We start with the constraints
xi ∈ {0, 1}, which become:

xi(x0 − xi) = 0, ∀i ∈ {1, . . . , n} (1)

Notice that we have used x0 instead of the constant 1, to remain inside a homoge-
neous setting.

Let us now consider an arbitrary inequality from our domain, corresponding to the
jth line in the matrix A′, namely:

aT
j x′ ≥ 0, ∀j ∈ {1, . . . , n}

We can safely multiply this constraint with xi and x0 − xi for any i ∈ {1, . . . , n},
because both of these quantities are nonnegative. Hence we obtain:

xiaT
j x′ ≥ 0, ∀i, j ∈ {1, . . . , n}

(x0 − xi)aT
j x′ ≥ 0, ∀i, j ∈ {1, . . . , n}

Hence from n inequalities, we have obtained 2n quadratic inequalities.

4.3 The lift step
We can write the inequalities in our linear program as a summation over products of
variables:

n∑
k=0

ajkxixk ≥ 0, ∀i, j ∈ {1, . . . , n} (2)

n∑
k=0

ajk(x0xk − xixk) ≥ 0, ∀i, j ∈ {1, . . . , n} (3)

This form allows us to relax this quadratic program and obtain a linear program, by
introducing 2n + 1 novel variables:

yij = xixj , ∀i, j ∈ {0, . . . , n}

6

Constraint (1) becomes:

yi0 = yii, ∀i ∈ {1, . . . , n} (4)

while constraints (2) and (3) become:

n∑
k=0

ajkyik ≥ 0, ∀i, j ∈ {1, . . . , n}

n∑
k=0

ajk(y0k − yik) ≥ 0, ∀i, j ∈ {1, . . . , n}

4.4 Additional constraints
Because of the meaning we have assigned to the variable yij , it makes sense to add the
following constraints to our LP:

yij = yji

xi = y0i

The first one implies the symmetry of the product, while the second encodes the
constraint x0 = 1. Hence, the final lifted version of our LP is:

min
x

cT · x

s.t.

xi = y0i = yii, ∀i ∈ {1, . . . , n} (5)
yij = yji, ∀i, j ∈ {0, . . . , n} (6)

n∑
k=0

ajkyik ≥ 0, ∀i, j ∈ {1, . . . , n} (7)

n∑
k=0

ajk(y0k − yik) ≥ 0, ∀i, j ∈ {1, . . . , n} (8)

x0 = 1, (9)

4.5 The project step
The final step in the method is to project the constraint back into the space involving
only the xi variables. This is achieved by adding together linear combinations of in-
equalities (7) and (8) with positive coefficients, canceling out some of the terms and
then replacing the remaining terms using (5). This will lead to a set of inequalities
involving only the variables xi.

7

To give a geometric intuition behind this step, one can visualize the lifted LP as
being a polytope in a 2n + 1 dimensional space. By building linear combinations of
inequalities and cancelling out the yij , we are actually projecting the polytope onto the
n + 1 dimensions corresponding to the xi = y0i variables (see figure Figure 1).

We shall not develop further this step formally, but shall illustrate it with an example
of vertex cover for the complete triangle and show that the odd cycle constraint is
derived at the end of the project step. The quadratic program we obtain is shown
below:

min
x

x1 + x2 + x3

s.t.

x1 + x2 ≥ x0

x1 + x3 ≥ x0

x2 + x3 ≥ x0

x1(x0 − x1) = 0
x2(x0 − x2) = 0
x3(x0 − x2) = 0

x0 = 1

We can multiply inequalities in many ways (more precisely in n2 = 9 ways). We
shall write only a few of them which are needed to make our point, for succinctness:

(x0 − x1)(x1 + x2) ≥ (x0 − x1)x0

(x0 − x2)(x2 + x3) ≥ (x0 − x2)x0

(x0 − x3)(x1 + x3) ≥ (x0 − x3)x0

x1(x2 + x3) ≥ x1x0

x2(x1 + x3) ≥ x2x0

After performing the multiplications, the lift step and simplifying equivalent terms,
one obtains:

y01 + y02 − y12 ≥ y00

y02 + y03 − y23 ≥ y00

y01 + y03 − y13 ≥ y00

y12 + y13 − y01 ≥ 0
y12 + y13 − y02 ≥ 0

By muliplying the first inequality by 2 and adding together, one obtains:

8

Figure 1: An intuitive diagram for the lift and project method. P is the original poly-
tope, K is the cone obtained after homogenizing the variables (which includes P),
N(K) is the projected cone (entirely included in K).

2y01 + 2y02 + 2y03 ≥ 4y00

Which is obviously equivalent to the odd cycle constraint:

x1 + x2 + x3 ≥ 2

Hence we have shown that, among other inequalities, the odd-cycle constraint is
derived in the project step. This result can be generalized to any graph, not just the
triangle, and implies that one iteration of lift an project generates a relaxation that is at
least as strong as that obtained by using the odd-cycle constraints alone.

5 A formal definition of the projected domain
Having presented the method, it might be interesting to provide a formal definition of
the new projected domain in terms of the original one. Let us denote by P ∈ Rn the
original polytope (corresponding to Ax ≥ 0) and by K ∈ Rn+1 the cone obtained
by homogenizing the constraints (corresponding to A′x′ ≥ 0). The result of lift-and-
project will be another cone N(K) ∈ Rn+1, living in the same space and K (see figure
Figure 1).

The following definition characterizes the points in N(K):

Definition 5.1. A point y is in the cone N(K) ∈ Rn+1 if and only if there exists a
matrix Y ∈ R(n+1)×(n+1) such that:

1. Y is symmetric

9

2. Ye0 = diag(Y) = y

3. Yei ∈ K, Y(e0 − ei) ∈ K, ∀i ∈ {1, . . . , n}

This definition actually captures the process in which we have derived constraints
troughout the method. For each projected point y in the resulting cone, the matrix Y
is representing the lifted variables corresponding to that point. We shall mention the
intuition behind each of the properties in the definition:

1. We have imposed symmetry explicitly in the lifted problem, so obviously Y
must obey this constraint too.

2. This requirement is saying that the zeroth column of Y is equal to its diagonal
both vectors contain projected variables. This requirement has also been explic-
itly added to the lifted LP by imposing xi = yi0 = yii.

3. This last requirement captures the way we have derived our constraints. Let us
consider an arbitrary solution that y ∈ N(K). We can write a constraint:

yiaT
j y ≥ 0

in matrix form as:

aT
j yyT ei ≥ 0

But if we note that Y is representing yyT , we have that:

aT
j Yei ≥ 0

But this inequality is equivalent to stating that Yei ∈ K. A similar intuition lies
behind the constraint Y(e0 − ei) ∈ K

We can also extends this definition to the case of semidefinite programming, by
imposing an additional constraint:

Definition 5.2. A point y is in the cone N+(K) ∈ Rn+1 if and only if there exists a
matrix Y ∈ R(n+1)×(n+1) such that it obeys all the constraints imposed by definition
Definition 5.1 plus one additional constraint, namely:

1. Y is PSD

5.1 Showing that this is a relaxation of the original problem
In order for the domain N(K) to be a relaxation of the domain K, we have to show
that N(K) does not clip away any integral solution.

Claim 5.3. The domain N(K) ⊂ K contains all the integral solutions contained in
K.

10

Proof. Let y ∈ {0, 1}n+1 be an integral solution from K. Let us consider the matrix
Y = yyT . It is easy to see that this matrix obeys all the constraints in the definition
of N(K). Indeed, the matrix Y is symmetric by definition. The diagonal elements
are yii = y2

i = yi (because yi ∈ {0, 1}), and the elements in the first column are
y0i = y0yi = yi (because y0 = 1), so the second property holds too. As for the last
property, let us consider one arbitrary column of Y:

Yei =


yiy0

yiy1

. . .
yiyn

 = yi · y ∈ K

This follows because y ∈ K and K is a cone. Similarly, it follows that Y(e0 − ei)
is in the cone.

Hence we have built a matrix Y that obeys the constraints in the definition, hence
it follows that y ∈ N(K) q.e.d.

We can also show the same result for the tighter domain N+(K), i.e.:

Claim 5.4. The domain N+(K) ⊂ NK ⊂ K contains all the integral solutions con-
tained in K.

Proof. The only constraint that remains to be checked is the PSD-ness constraint. This
follows trivially, since the matrix Y which we have constructed in the previous proof
is PSD by definition.

5.2 Some complexity results
We succinctly mention some complexity results for this method. The lift-and-project
operator N(K) (or N+(K) if one works in the semidefinite programming setting) can
be applied recursively any number of times:

Nr(K) = N(Nr−1(K))

We provide two interesting complexity properties that arise from this procedure
(for formal proofs, please refer to [LS91]):

Claim 5.5. If K has a poly-time separation oracle, the one can optimize a linear
function over Nr(K) in time nO(r).

Claim 5.6. If the original problem has n variables, then Nn(K) = K0 where K0

denotes the integral hull of the integer problem.

Notice that the latter results does not help us solve the problem efficiently, since the
time required to obtain the integral hull would be nO(n).

Hence we conclude that the interesting problem to look at now in the field is to
determine for which problems a few rounds of method application give some non-
trivial improvement over the original relaxation.

11

Another issue still under investigation is the effect of lift-and-project on the inte-
grality gap for different classes of problems. One negative result for Vertex cover can
be found in [GMPT06].

References
[GMPT06] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis

Tourlakis. Integrality gaps of 2-o(1) for vertex cover sdps in the lovasz-
schrijver hierarchy. Manuscript, 2006.

[LS91] Laszlo Lovasz and Alexander Scrijver. Cones of matrices and set-
functions, and 0-1 optimization. SIAM Journal on Optimization, 1:166–
190, 1991.

[Tou06] Iannis Tourlakis. New lower bounds for Approximation Algorithms in the
Lovasz-Schrijver Hierarchy. PhD thesis, Princeton University, 2006.

12

