
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 13: Coloring of Graphs

Notes taken by Waqas ur Rehman

April 19, 2007

Summary: In this lecture, we talk about coloring of graphs. First we
discuss the randomized rounding technique of Karger, Matwani and Sudan
that can color a 3-colorable graph in n vertices with maximum degree4 in
polynomial time using O(40.631) colors. Next we discuss more general-
ized algorithm of Karger, Matwani and Sudan that combines this random-
ized technique with Wigderson’s algorithm to yield an O(n0.386)-coloring
of graph. Finally, we discuss Lovász Theta function, a SDP relaxation that
led to finding clique and chromatic number of perfect graphs.

1 Background
We talked about coloring of graphs in previous lecture and have discussed two things.

Wigderson’s Algorithm [Wig83] It is a totally combinatorial algorithm and allows us
to color any 3-colorable graph in O(

√
n).

Relevant SDP Relaxation if χ(G) ≤ 3 then the following SDP is feasible

∀i ‖υi‖ = 1

∀ij ε E 〈υi, υj〉 ≤ −1
2

This implies that if we have three coloring then the vertices of a graph can be
partitioned into three disjoined sets such that vertices in the same set have no
edges between them. So If we map these sets to three different points on a 2D
sphere as shown in Figure 1, we get a maximum separation of 120o between
these points so the inner product of vectors is exactly − 1

2 .

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

Figure 1: SDP relaxation for χ(G) ≤ 3

2 Karger-Matwani-Sudan’s Algorithm (KMS)
Overview We use Wigderson’s algorithm and SDP relaxation mentioned above to de-

fine KMS. As with the Geomans-Williamson’s case we have some spread of
points on unit sphere as our starting points. Points associated with the neigh-
boring vertices have a large separation, 120o at least. We can think Geomans-
Williamson as a variant of coloring problem so that we try to color in two colors
but not to satisfy all edges but to satisfy as many edges as possible. We use some-
thing similar here with the exception that now we use many more colors instead
of just using two colors. Getting more and more colors will help us getting less
and less monochromatic edges.

We take a random hyperplane and the color given to the vertices on one side
of hyperplane is different from the color on other side. Next we take another
random hyperplane and do the same, so in general we can do this for t times and
at the end we partition the sphere into at most 2t sections. In general we have t
such random unit vectors and a point on the sphere is mapped to a ±1 vector of
dimension t depending on its sign vector as shown in Figure 2.

Algorithm 2.1 (KMS Part I).

1. Solve the VP and let υi, υj ,υn be the solution.

2. Choose t = dlog34+ 1e random hyperplanes ri, rj ,, rn where 4 is the
maximum degree of graph G.

3. Assign υi with a color that correspond to is sign vector as follows

υi −→ (sign(〈υi, ri〉), sign(〈υi, rj〉),, sign(〈υi, rt〉)
Since there are 2t distinct sign vectors so 2t colors are used in this step. Now
we analyze the number of monochromatic edges when we use the mapping as

2

Figure 2: Point A is positive since all its sign vectors are positives

our colors. The mapping can be thought of as a coloring where the name of
color is ± vector in t-dimension. We foucs on one edge, let vi and vj be the
vertices so the probability that they get the same color is exactly the probability
that each and and every hyperplane will keep them on the same side, if any of
t hyperplanes separate these vertices, they will get the different color. Suppose
the angle between vertices is β then the probability that they are not separated
is Π−β

Π . We know if there is an edge between vertices then they have a good
separation and β is at least 120o. So far an edge ij and for any coordinate s we
have

Pr[sign(〈υi, rs〉) = sign(〈υj , rs〉)] ≤ 1
3

So from independence

Pr[col(υi) = col(υj)] ≤ (
1
3
)t ≤ 1

34
So the expected number of monochromatic edges is

E[number of monochromatic edges] ≤ m
1

34 where m is number ofedges

bounding m as a function of 4 we get

E[number of monochromatic edges] ≤ n4
2

.
1

34 ≤ n

6

4. After step 3 we have at most n
3 bad vertices that are involved in n

6 monochromatic
edges. We remove the colors from the vertices with monochromatic edges and
continue the process for uncolored vertices with fresh colors. To color all the
vertices we require log(n) iterations and each round requires 2t colors so in total
we need 2t.(log(n)) colors. See Figure 3.

Total colors used = 2t.(log(n)) ≈ 4log3(2) ≈ 40.631

3

Figure 3: Graph Coloring with KMS Part 1

As we can see that there is no improvement in the number of colors used when
compared to Wigderson’s algorithm. To improve the number of colors Karger, Matwani
and Sudan suggested another algorithm that combines Algorithm 2.1 with Wigderson’s
algorithm.

Algorithm 2.2 (KMS Part 2).

1. As long as there exists vertex υ with degree ≥ δ, color the neighbors of υ with
two colors. Afterwards we discard the neighbors of υ and the two colors used.

2. For the remaining graph apply Algorithm 2.1.

Since we cannot have more than n
δ iterations so total number of colors used ≤ n

δ +
δ0.631. The number of colors used is minimized when n

δ = δ0.631 which implies
δ = n

1
1.631 . Thus, total colors used = O(n

1
1.631)

3 Lovász Theta Function
Definition 3.1. Vector chromatic number is the smallest k for which the Ḡ is k-vector
colorable. G is k-vector colorable if the following SDP is feasible.

〈υi, υj〉 ≤ − 1
k − 1

∀ij ε E

υi ε Rn

〈υi, υi〉 = 1

4

Lavász [Lov99] defined the vector chromatic number of a graph G and it is named
Lovász Theta function theta θ(G), where

ω(G) ≤ θ(Ḡ) ≤ χ(G)

where ω(G) is size of maximal clique of a graph G and θ(Ḡ) is vector coloring of G.

Lemma 3.2. If G is k-colorable then it is also k-vector colorable.

Proof. Karger showed that for all positive integers k and n with k ≤ n + 1, there exist
K unit vectors in <n such that the dot product of any distinct pair is− 1

k−1 . Bijectively
mapping the k colors to these k vectors we can prove the lemma. For details refer to
[KMS98].

Definition 3.3. Perfect graph is a graph G for which

ω(H) = χ(H)

∀ subgraph H of G

For perfect graphs θ(Ḡ) allows us to compute ω(G) = χ(G)

Lemma 3.4. ω(G) = Θ(Ḡ)

Proof. Let υi, υj ,υn be an optimal vector chromatic solution of G.

‖υi‖ = 1

〈υi, υj〉 ≤ − 1
k − 1

, k = Θ(Ḡ)

Suppose ∃ a clique of size ω in G (ω = ω(G)). Let I be that clique.

0 ≤ 〈
∑

iεI

υi,
∑

iεI

υi〉 =
∑

i

〈υi, υi〉+
∑

i 6=j

〈υi, υj〉

⇒
∑

i

〈υi, υj〉 ≥ −ω

⇒ max
i 6=j

〈υi, υj〉 ≥ − ω

ω(ω − 1)
= − 1

ω − 1

⇒ Θ(Ḡ) = k ≥ ω

5

References
[KMS98] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph

coloring by semidefinite programming. Journal of the ACM, 45(2):246–265,
1998.

[Lov99] L Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory, 25(1):1–7, 1999.

[Wig83] A. Wigderson. Improving the performance guarantee for approximate graph
coloring. Journal of the ACM, 30(4):729–735, 1983.

6

