
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 11: Primal-Dual Schema and Algorithms

Notes taken by Sepand Mavandadi

April 7, 2007

Summary: This lecture starts with an LP relaxation of the max sat prob-
lem and a proof showing how close the relaxed optimum is to the integral
optimum. Then we move on to a definition and proof complementary
slackness and use it to establish primal-dual schema and algorithms. We
then show an example of using such an algorithm on the set cover problem.

1 Max Sat
The maximum satisfiability problem asks for the maximum number of conjunctive
normal form (CNF) clauses that can be satisfied by any assignment of the variables
involved:

Input: CNF formula (e.g. (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x1) ∧ (¬x3 ∨ ¬x1) )

Output: Truth assignments satisfying maximum number of clauses(e.g.
from above: x1 = 1; x2 = 1; x3 = 0 )

1.1 Integer Program

max
∑

Cj

ZCj

s.t
∑

i∈C+

xi +
∑

i∈C−
(1− xi) ≥ ZCj

xj ∈ {0, 1}
ZCj ∈ {0, 1}
∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.
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1.2 LP Relaxation
max

∑

C

ZC

s.t
∑

i∈C+

xi +
∑

i∈C−
(1− xi) ≥ ZCj

0 ≤ xi ≤ 1
ZCj

≤ 1

Rounding procedure: Assign each variable to be true with probability equal to the
corresponding value, xi, picked by the above LP.

We now show that the above optimum is not much worse than the integral optimum.
To do so, we ask the following question:

What is the probability that a certain clause, C, is not satisfied?
Let (x,z) be a solution to the LP and BCj

be the probability that clause Cj with K
variables is not satisfied. Then

Pr[BCj ] =
∏

i

(1− x∗i ), where x∗i =
{

xi if i ∈ C+

1− xi if i ∈ C−.

by the geometric means inequality, Pr[BCj ] ≤
(P

(1−x∗i )
K

)K

=
(
1−

P
x∗i )

K

)K

≤
(
1− ZCj

K

)K

Pr[ satisfying Cj ] = 1− Pr[BCj ]

≥ 1 =
(
1− ZCj

K

)K

≥ ZC

(
1− (

1− 1
K

)K
)

≥ ZC

(
1− e−1

)

⇒ E[ # of satisfied clauses ] =
∑

j

Pr[ satisfying Cj ]

≥ ∑
ZCj

(
1− 1

e

)
= OPT∗

(
1− 1

e

)

≥ OPT
(
1− 1

e

)

2 Primal-Dual Schema
Before describing the algorithm in detail, we must establish an important result:

2.1 Complementary Slackness
Consider the following primal and dual pair:

Primal:

min < c, x >
s.t Ax ≥ b

x ≥ 0
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Dual:

max < b, y >
s.t y ≥ 0
yA ≤ c

At an optimum, each variable in the above inequalities is either zero or the corre-
sponding inequality is satisfied as an equality:

Definition 2.1. Complementary Slackness (CS) states that x,y is a Primal-Dual opti-
mum iff

∀j, xj = 0 or (yA)j = cj (Primal Complementary Slackness)
∀i, yi = 0 or (Ax)i = bi (Dual Complementary Slackness)

Proof : By strong duality, at an optimum, < c, x > = < yA, x >, which implies
that ∀xi 6= 0, ci = (yA)i (Primal CS). Also by strong duality, < y,Ax > = < b, y >,
which implies that ∀yj 6= 0, bj = (Ax)j (Dual CS).

Our algorithm will try to narrow the gap between the value of the objective func-
tions of the primal and dual. It will correct values of x and y locally based on comple-
mentary slackness and stops when an integrally feasible solution with a small primal-
dual gap is reached.

2.2 Relaxed Complementary Slackness
We can make CS more useful to our algorithm by relaxing some of the equalities:

Primal relaxed CS: ∀j, xj = 0 or Cj

α ≤ (yA)j ≤ Cj

Dual relaxed CS: ∀i, yi = 0 or bi ≤ (Ax)i ≤ βbi

Where α ≥ 1 and β ≥ 1.

Claim 2.2. If x,y satisfies the CS conditions, then < x, c > ≤ αβ < y, b >.

Proof :
< x, c > =

∑

j

(yA)jxj

=
∑

j,xj>0

(yA)jxj

≥
∑

j,xj>0

Cj

α
xj

= 1
α < c, x >

⇒< c, x > ≤ α < y, Ax >

Similarly, it can be shown that < y, b > ≥ 1
β < yA, x >, completing the proof.

We now have all the tools needed for our algorithm, which follows.
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2.3 Algorithm Outline
We start with the primal and dual versions of our problem:

Primal:

min < c, x >
s.t Ax ≥ b

x ≥ 0

Dual:

max < y, b >
s.t yA ≤ c

y ≥ 0

where we assume that c ≥ 0 and A ≥ 0.

Algorithm:

Initialize with x = 0, y = 0
While x not feasible {

Raise y’s that are not involved in tight inequalities ***(here, tight means that the
inequality is satisfied as a strict equality)*** yA ≤ c until one or more inequalities
become tight }

2.4 An Example: Set Cover
The LP relaxation of the set cover problem is the following:

Primal:

min
∑

CsXs

Ax ≥ 1

Dual:

max
∑

ysXs

ye ≥ 0
yA ≤ C

Lets assume that every element belongs to at most f sets.
The primal-dual algorithm that we now construct will get to an integral primal-dual

pair that will satisfy the relaxed CS conditions with α = 1, β = f .

Relaxed CS states that

∀s, xs 6= 0 ⇒
∑

e∈S

ye = (yA)s = Cs

and also
∀e, ys 6= 0 ⇒

∑

S3e

xs ≤ f
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Algorithm: Approximation to set cover with factor f

Initialize with x = 0, y = 0
do until all elements are covered {

pick an uncovered element, e, and raise ye until the constraint on one or more sets
become tight

pick all tight sets and add to cover declare elements in those sets as covered }

The above algorithm works since if e is not covered, containing sets are not picked.
Therefore, we know that if a set is not covered, the corresponding y must have some
slack, which implies that ye can be increased without violating constraints.
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